Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 182(5): 1252-1270.e34, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32818467

RESUMO

Aryl hydrocarbon receptor (AHR) activation by tryptophan (Trp) catabolites enhances tumor malignancy and suppresses anti-tumor immunity. The context specificity of AHR target genes has so far impeded systematic investigation of AHR activity and its upstream enzymes across human cancers. A pan-tissue AHR signature, derived by natural language processing, revealed that across 32 tumor entities, interleukin-4-induced-1 (IL4I1) associates more frequently with AHR activity than IDO1 or TDO2, hitherto recognized as the main Trp-catabolic enzymes. IL4I1 activates the AHR through the generation of indole metabolites and kynurenic acid. It associates with reduced survival in glioma patients, promotes cancer cell motility, and suppresses adaptive immunity, thereby enhancing the progression of chronic lymphocytic leukemia (CLL) in mice. Immune checkpoint blockade (ICB) induces IDO1 and IL4I1. As IDO1 inhibitors do not block IL4I1, IL4I1 may explain the failure of clinical studies combining ICB with IDO1 inhibition. Taken together, IL4I1 blockade opens new avenues for cancer therapy.


Assuntos
L-Aminoácido Oxidase/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Adulto , Idoso , Animais , Linhagem Celular , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Glioma/imunologia , Glioma/metabolismo , Glioma/terapia , Células HEK293 , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/terapia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Ratos
2.
Immunity ; 54(12): 2825-2841.e10, 2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34879221

RESUMO

T cell exhaustion limits anti-tumor immunity and responses to immunotherapy. Here, we explored the microenvironmental signals regulating T cell exhaustion using a model of chronic lymphocytic leukemia (CLL). Single-cell analyses identified a subset of PD-1hi, functionally impaired CD8+ T cells that accumulated in secondary lymphoid organs during disease progression and a functionally competent PD-1int subset. Frequencies of PD-1int TCF-1+ CD8+ T cells decreased upon Il10rb or Stat3 deletion, leading to accumulation of PD-1hi cells and accelerated tumor progression. Mechanistically, inhibition of IL-10R signaling altered chromatin accessibility and disrupted cooperativity between the transcription factors NFAT and AP-1, promoting a distinct NFAT-associated program. Low IL10 expression or loss of IL-10R-STAT3 signaling correlated with increased frequencies of exhausted CD8+ T cells and poor survival in CLL and in breast cancer patients. Thus, balance between PD-1hi, exhausted CD8+ T cells and functional PD-1int TCF-1+ CD8+ T cells is regulated by cell-intrinsic IL-10R signaling, with implications for immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunoterapia/métodos , Leucemia Linfocítica Crônica de Células B/imunologia , Receptores de Interleucina-10/metabolismo , Subpopulações de Linfócitos T/imunologia , Animais , Linhagem Celular Tumoral , Células Cultivadas , Microambiente Celular , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Humanos , Imunidade , Camundongos , Camundongos Endogâmicos C57BL , Fatores de Transcrição NFATC/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Receptores de Interleucina-10/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais , Fator de Transcrição AP-1/metabolismo
3.
Blood ; 144(7): 784-789, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38805637

RESUMO

ABSTRACT: Relapse after anti-CD19 chimeric antigen receptor (CD19-CAR) occurs in a substantial proportion of patients with lymphoid malignancies. We assessed the potential benefits of co-administering CD20-targeting bispecific antibodies (CD20-BsAbs) with CD19-CAR T cells with the aim of enhancing immunotherapeutic efficacy. Addition of CD20-BsAbs to cocultures of CD19-CARs and primary samples of B-cell malignancies, comprising malignant B cells and endogenous T cells, significantly improved killing of malignant cells and enhanced the expansion of both endogenous T cells and CD19-CAR T cells. In an immunocompetent mouse model of chronic lymphocytic leukemia, relapse after initial treatment response frequently occurred after CD19-CAR T-cell monotherapy. Additional treatment with CD20-BsAbs significantly enhanced the treatment response and led to improved eradication of malignant cells. Higher efficacy was accompanied by improved T-cell expansion with CD20-BsAb administration and led to longer survival with 80% of the mice being cured with no detectable malignant cell population within 8 weeks of therapy initiation. Collectively, our in vitro and in vivo data demonstrate enhanced therapeutic efficacy of CD19-CAR T cells when combined with CD20-BsAbs in B-cell malignancies. Activation and proliferation of both infused CAR T cells and endogenous T cells may contribute to improved disease control.


Assuntos
Anticorpos Biespecíficos , Antígenos CD19 , Antígenos CD20 , Imunoterapia Adotiva , Leucemia Linfocítica Crônica de Células B , Animais , Camundongos , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/terapia , Leucemia Linfocítica Crônica de Células B/patologia , Humanos , Antígenos CD19/imunologia , Antígenos CD20/imunologia , Anticorpos Biespecíficos/uso terapêutico , Imunoterapia Adotiva/métodos , Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Blood ; 144(5): 510-524, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38684038

RESUMO

ABSTRACT: The T-box transcription factor T-bet is known as a master regulator of the T-cell response but its role in malignant B cells has not been sufficiently explored. Here, we conducted single-cell resolved multi-omics analyses of malignant B cells from patients with chronic lymphocytic leukemia (CLL) and studied a CLL mouse model with a genetic knockout of Tbx21. We found that T-bet acts as a tumor suppressor in malignant B cells by decreasing their proliferation rate. NF-κB activity, induced by inflammatory signals provided by the microenvironment, triggered T-bet expression, which affected promoter-proximal and distal chromatin coaccessibility and controlled a specific gene signature by mainly suppressing transcription. Gene set enrichment analysis identified a positive regulation of interferon signaling and negative control of proliferation by T-bet. In line, we showed that T-bet represses cell cycling and is associated with longer overall survival of patients with CLL. Our study uncovered a novel tumor suppressive role of T-bet in malignant B cells via its regulation of inflammatory processes and cell cycling, which has implications for the stratification and therapy of patients with CLL. Linking T-bet activity to inflammation explains the good prognostic role of genetic alterations in the inflammatory signaling pathways in CLL.


Assuntos
Proliferação de Células , Leucemia Linfocítica Crônica de Células B , Proteínas com Domínio T , Leucemia Linfocítica Crônica de Células B/patologia , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/imunologia , Leucemia Linfocítica Crônica de Células B/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Animais , Humanos , Camundongos , Linfócitos B/patologia , Linfócitos B/metabolismo , Linfócitos B/imunologia , Camundongos Knockout , Regulação Leucêmica da Expressão Gênica , NF-kappa B/metabolismo
5.
Nucleic Acids Res ; 51(2): 687-711, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36629267

RESUMO

The DNA damage response (DDR) is essential to maintain genome stability, and its deregulation predisposes to carcinogenesis while encompassing attractive targets for cancer therapy. Chromatin governs the DDR via the concerted interplay among different layers, including DNA, histone post-translational modifications (hPTMs) and chromatin-associated proteins. Here, we employ multi-layered proteomics to characterize chromatin-mediated functional interactions of repair proteins, signatures of hPTMs and the DNA-bound proteome during DNA double-strand break (DSB) repair at high temporal resolution. Our data illuminate the dynamics of known and novel DDR-associated factors both at chromatin and at DSBs. We functionally attribute novel chromatin-associated proteins to repair by non-homologous end-joining (NHEJ), homologous recombination (HR) and DSB repair pathway choice. We reveal histone reader ATAD2, microtubule organizer TPX2 and histone methyltransferase G9A as regulators of HR and involved in poly-ADP-ribose polymerase-inhibitor sensitivity. Furthermore, we distinguish hPTMs that are globally induced by DNA damage from those specifically acquired at sites flanking DSBs (γH2AX foci-specific) and profiled their dynamics during the DDR. Integration of complementary chromatin layers implicates G9A-mediated monomethylation of H3K56 in DSBs repair via HR. Our data provide a dynamic chromatin-centered view of the DDR that can be further mined to identify novel mechanistic links and cell vulnerabilities in DSB repair.


Assuntos
Cromatina , Histonas , Cromatina/genética , Histonas/metabolismo , Proteômica , Reparo do DNA , Reparo do DNA por Junção de Extremidades , DNA , Reparo de DNA por Recombinação
6.
Blood ; 139(6): 859-875, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34662393

RESUMO

Covalent Bruton tyrosine kinase (BTK) inhibitors, such as ibrutinib, have proven to be highly beneficial in the treatment of chronic lymphocytic leukemia (CLL). Interestingly, the off-target inhibition of IL-2-inducible T-cell kinase (ITK) by ibrutinib may also play a role in modulating the tumor microenvironment, potentially enhancing the treatment benefit. However, resistance to covalently binding BTK inhibitors can develop as the result of a mutation in cysteine 481 of BTK (C481S), which prevents irreversible binding of the drugs. In the present study we performed preclinical characterization of vecabrutinib, a next-generation noncovalent BTK inhibitor that has ITK-inhibitory properties similar to those of ibrutinib. Unlike ibrutinib and other covalent BTK inhibitors, vecabrutinib showed retention of the inhibitory effect on C481S BTK mutants in vitro, similar to that of wild-type BTK. In the murine Eµ-TCL1 adoptive transfer model, vecabrutinib reduced tumor burden and significantly improved survival. Vecabrutinib treatment led to a decrease in CD8+ effector and memory T-cell populations, whereas the naive populations were increased. Of importance, vecabrutinib treatment significantly reduced the frequency of regulatory CD4+ T cells in vivo. Unlike ibrutinib, vecabrutinib treatment showed minimal adverse impact on the activation and proliferation of isolated T cells. Lastly, combination treatment with vecabrutinib and venetoclax augmented treatment efficacy, significantly improved survival, and led to favorable reprogramming of the microenvironment in the murine Eµ-TCL1 model. Thus, noncovalent BTK/ITK inhibitors, such as vecabrutinib, may be efficacious in C481S BTK mutant CLL while preserving the T-cell immunomodulatory function of ibrutinib.


Assuntos
Tirosina Quinase da Agamaglobulinemia , Leucemia Linfocítica Crônica de Células B , Inibidores de Proteínas Quinases , Proteínas Tirosina Quinases , Animais , Feminino , Humanos , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Linhagem Celular Tumoral , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/patologia , Camundongos Endogâmicos C57BL , Modelos Moleculares , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/antagonistas & inibidores , Carga Tumoral/efeitos dos fármacos
7.
Haematologica ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38721725

RESUMO

The gut microbiota play a critical role in maintaining a healthy human body and their dysregulation is associated with various diseases. In this study, we investigated the influence of the gut microbiome diversity on chronic lymphocytic leukemia (CLL) development. Stool sample analysis of 59 CLL patients revealed individual and heterogeneous microbiome compositions, but allowed for grouping of patients according to their microbiome diversity. Interestingly, CLL patients with a lower microbiome diversity and an enrichment of bacteria linked to poor health suffered from a more advanced or aggressive form of CLL. In the Eµ-TCL1 mouse model of CLL, we observed a faster course of disease when mice were housed in high hygiene conditions. Shotgun DNA sequencing of fecal samples showed that this was associated with a lower microbiome diversity which was dominated by Mucispirillum and Parabacteroides genera in comparison to mice kept under lower hygiene conditions. In conclusion, we applied taxonomic microbiome analyses to demonstrate a link between the gut microbiome diversity and the clinical course of CLL in humans, as well as the development of CLL in mice. Our novel data serve as a basis for further investigations to decipher the pathological and mechanistic role of intestinal microbiota in CLL development.

8.
BMC Bioinformatics ; 24(1): 326, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37653401

RESUMO

BACKGROUND: Here we present scSNPdemux, a sample demultiplexing pipeline for single-cell RNA sequencing data using natural genetic variations in humans. The pipeline requires alignment files from Cell Ranger (10× Genomics), a population SNP database and genotyped single nucleotide polymorphisms (SNPs) per sample. The tool works on sparse genotyping data in VCF format for sample identification. RESULTS: The pipeline was tested on both single-cell and single-nuclei based RNA sequencing datasets and showed superior demultiplexing performance over the lipid-based CellPlex and Multi-seq sample multiplexing technique which incurs additional single cell library preparation steps. Specifically, our pipeline demonstrated superior sensitivity and specificity in cell-identity assignment over CellPlex, especially on immune cell types with low RNA content. CONCLUSIONS: We designed a streamlined pipeline for single-cell sample demultiplexing, aiming to overcome common problems in multiplexing samples using single cell libraries which might affect data quality and can be costly.


Assuntos
Confiabilidade dos Dados , Polimorfismo de Nucleotídeo Único , Humanos , Biblioteca Gênica , Genômica , Genótipo
9.
Blood ; 137(22): 3064-3078, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33512408

RESUMO

Chronic lymphocytic leukemia (CLL) remains incurable despite B-cell receptor-targeted inhibitors revolutionizing treatment. This suggests that other signaling molecules are involved in disease escape mechanisms and resistance. Toll-like receptor 9 (TLR9) is a promising candidate that is activated by unmethylated cytosine guanine dinucleotide-DNA. Here, we show that plasma from patients with CLL contains significantly more unmethylated DNA than plasma from healthy control subjects (P < .0001) and that cell-free DNA levels correlate with the prognostic markers CD38, ß2-microglobulin, and lymphocyte doubling time. Furthermore, elevated cell-free DNA was associated with shorter time to first treatment (hazard ratio, 4.0; P = .003). We also show that TLR9 expression was associated with in vitro CLL cell migration (P < .001), and intracellular endosomal TLR9 strongly correlated with aberrant surface expression (sTLR9; r = 0.9). In addition, lymph node-derived CLL cells exhibited increased sTLR9 (P = .016), and RNA-sequencing of paired sTLR9hi and sTLR9lo CLL cells revealed differential transcription of genes involved in TLR signaling, adhesion, motility, and inflammation in sTLR9hi cells. Mechanistically, a TLR9 agonist, ODN2006, promoted CLL cell migration (P < .001) that was mediated by p65 NF-κB and STAT3 transcription factor activation. Importantly, autologous plasma induced the same effects, which were reversed by a TLR9 antagonist. Furthermore, high TLR9 expression promoted engraftment and rapid disease progression in a NOD/Shi-scid/IL-2Rγnull mouse xenograft model. Finally, we showed that dual targeting of TLR9 and Bruton's tyrosine kinase (BTK) was strongly synergistic (median combination index, 0.2 at half maximal effective dose), which highlights the distinct role for TLR9 signaling in CLL and the potential for combined targeting of TLR9 and BTK as a more effective treatment strategy in this incurable disease.


Assuntos
Movimento Celular/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Leucemia Linfocítica Crônica de Células B , Proteínas de Neoplasias , Oligodesoxirribonucleotídeos/farmacologia , Receptor Toll-Like 9 , Animais , Feminino , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor Toll-Like 9/agonistas , Receptor Toll-Like 9/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Haematologica ; 108(11): 3011-3024, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37345470

RESUMO

Chronic lymphocytic leukemia (CLL) cells are highly dependent on interactions with the immunosuppressive tumor microenvironment (TME) for survival and proliferation. In the search for novel treatments, pro-inflammatory cytokines have emerged as candidates to reactivate the immune system. Among those, interleukin 27 (IL-27) has recently gained attention, but its effects differ among malignancies. Here, we utilized the Eµ-TCL1 and EBI3 knock-out mouse models as well as clinical samples from patients to investigate the role of IL-27 in CLL. Characterization of murine leukemic spleens revealed that the absence of IL-27 leads to enhanced CLL development and a more immunosuppressive TME in transgenic mice. Gene-profiling of T-cell subsets from EBI3 knock-out highlighted transcriptional changes in the CD8+ T-cell population associated with T-cell activation, proliferation, and cytotoxicity. We also observed an increased anti-tumor activity of CD8+ T cells in the presence of IL-27 ex vivo with murine and clinical samples. Notably, IL-27 treatment led to the reactivation of autologous T cells from CLL patients. Finally, we detected a decrease in IL-27 serum levels during CLL development in both pre-clinical and patient samples. Altogether, we demonstrated that IL-27 has a strong anti-tumorigenic role in CLL and postulate this cytokine as a promising treatment or adjuvant for this malignancy.


Assuntos
Interleucina-27 , Leucemia Linfocítica Crônica de Células B , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos , Citocinas , Imunossupressores , Leucemia Linfocítica Crônica de Células B/patologia , Camundongos Transgênicos , Subpopulações de Linfócitos T/patologia , Microambiente Tumoral
11.
Eur J Immunol ; 51(6): 1449-1460, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33788264

RESUMO

The pathogenesis of autoimmune complications triggered by SARS-CoV2 has not been completely elucidated. Here, we performed an analysis of the cellular immune status, cell ratios, and monocyte populations of patients with COVID-19 treated in the intensive care unit (ICU) (cohort 1, N = 23) and normal care unit (NCU) (cohort 2, n = 10) compared with control groups: patients treated in ICU for noninfectious reasons (cohort 3, n = 30) and patients treated in NCU for infections other than COVID-19 (cohort 4, n = 21). Patients in cohort 1 presented significant differences in comparison with the other cohorts, including reduced frequencies of lymphocytes, reduced CD8+T-cell count, reduced percentage of activated and intermediate monocytes and an increased B/T8 cell ratio. Over time, patients in cohort 1 who died presented with lower counts of B, T, CD4+ T, CD8+ T-lymphocytes, NK cells, and activated monocytes. The B/T8 ratio was significantly lower in the group of survivors. In cohort 1, significantly higher levels of IgG1 and IgG3 were found, whereas cohort 3 presented higher levels of IgG3 compared to controls. Among many immune changes, an elevated B/T8-cell ratio and a reduced rate of activated monocytes were mainly observed in patients with severe COVID-19. Both parameters were associated with death in cohort 1.


Assuntos
Linfócitos B/imunologia , COVID-19/imunologia , Monócitos/imunologia , SARS-CoV-2/imunologia , Idoso , Anticorpos Antivirais/imunologia , Linfócitos B/patologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , COVID-19/patologia , Feminino , Humanos , Imunoglobulina G/imunologia , Contagem de Linfócitos , Masculino , Pessoa de Meia-Idade , Monócitos/patologia , Estudos Prospectivos , Índice de Gravidade de Doença
12.
Haematologica ; 107(3): 604-614, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33691380

RESUMO

Clonal evolution is involved in the progression of chronic lymphocytic leukemia (CLL). In order to link evolutionary patterns to different disease courses, we performed a long-term longitudinal mutation profiling study of CLL patients. Tracking somatic mutations and their changes in allele frequency over time and assessing the underlying cancer cell fraction revealed highly distinct evolutionary patterns. Surprisingly, in long-term stable disease and in relapse after long-lasting clinical response to treatment, clonal shifts are minor. In contrast, in refractory disease major clonal shifts occur although there is little impact on leukemia cell counts. As this striking pattern in refractory cases is not linked to a strong contribution of known CLL driver genes, the evolution is mostly driven by treatment-induced selection of sub-clones, underlining the need for novel, non-genotoxic treatment regimens.


Assuntos
Leucemia Linfocítica Crônica de Células B , Evolução Clonal/genética , Células Clonais , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Estudos Longitudinais , Mutação
13.
Blood ; 134(6): 534-547, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31010847

RESUMO

Targeted therapy is revolutionizing the treatment of cancers, but resistance evolves against these therapies and derogates their success. The phosphatidylinositol 3-kinase delta (PI3K-δ) inhibitor idelalisib has been approved for treatment of chronic lymphocytic leukemia (CLL) and non-Hodgkin lymphoma, but the mechanisms conferring resistance in a subset of patients are unknown. Here, we modeled resistance to PI3K-δ inhibitor in vivo using a serial tumor transfer and treatment scheme in mice. Whole-exome sequencing did not identify any recurrent mutation explaining resistance to PI3K-δ inhibitor. In the murine model, resistance to PI3K-δ inhibitor occurred as a result of a signaling switch mediated by consistent and functionally relevant activation of insulin-like growth factor 1 receptor (IGF1R), resulting in enhanced MAPK signaling in the resistant tumors. Overexpression of IGF1R in vitro demonstrated its prominent role in PI3K-δ inhibitor resistance. IGF1R upregulation in PI3K-δ inhibitor-resistant tumors was mediated by functional activation and enhanced nuclear localization of forkhead box protein O1 transcription factors and glycogen synthase kinase 3ß. In human CLL, high IGF1R expression was associated with trisomy 12. CLL cells from an idelalisib-treated patient showed decreased sensitivity to idelalisib in vitro concomitant with enhanced MAPK signaling and strong upregulation of IGF1R upon idelalisib exposure. Thus, our results highlight that alternative signaling cascades play a predominant role in the resistance and survival of cancer cells under PI3K-δ inhibition. We also demonstrate that these pathway alterations can serve as therapeutic targets, because inhibition of IGF1R offered efficacious salvage treatment of PI3K-δ inhibitor-resistant tumors in vitro and in vivo.


Assuntos
Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Leucemia Linfocítica Crônica de Células B/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Receptor IGF Tipo 1/metabolismo , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Análise Mutacional de DNA , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/mortalidade , Leucemia Linfocítica Crônica de Células B/patologia , Camundongos , Mutação , Receptor IGF Tipo 1/genética , Resultado do Tratamento , Sequenciamento do Exoma , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Haematologica ; 106(4): 968-977, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32139435

RESUMO

Ibrutinib is a bruton's tyrosine kinase (BTK) inhibitor approved for the treatment of multiple B-cell malignancies, including chronic lymphocytic leukemia (CLL). In addition to blocking B-cell receptor signaling and chemokine receptor-mediated pathways in CLL cells, that are known drivers of disease, ibrutinib also affects the microenvironment in CLL via targeting BTK in myeloid cells and IL-2-inducible T-cell kinase (ITK) in T-cells. These non-BTK effects were suggested to contribute to the success of ibrutinib in CLL. By using the Eµ-TCL1 adoptive transfer mouse model of CLL, we observed that ibrutinib effectively controls leukemia development, but also results in significantly lower numbers of CD8+ effector T-cells, with lower expression of activation markers, as well as impaired proliferation and effector function. Using CD8+ T-cells from a T-cell receptor (TCR) reporter mouse, we verified that this is due to a direct effect of ibrutinib on TCR activity, and demonstrate that co-stimulation via CD28 overcomes these effects. Most interestingly, combination of ibrutinib with blocking antibodies targeting PD-1/PD-L1 axis in vivo improved CD8+ T-cell effector function and control of CLL. In sum, these data emphasize the strong immunomodulatory effects of ibrutinib and the therapeutic potential of its combination with immune checkpoint blockade in CLL.


Assuntos
Leucemia Linfocítica Crônica de Células B , Adenina/análogos & derivados , Animais , Linfócitos T CD8-Positivos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Camundongos , Piperidinas , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas , Pirazóis/farmacologia , Pirimidinas/farmacologia , Microambiente Tumoral
15.
Br J Haematol ; 189(1): 133-145, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31724172

RESUMO

Chronic lymphocytic leukaemia (CLL) is associated with alterations in T cell number, subset distribution and function. Among these changes, an increase in CD4+ T cells was reported. CD4+ T cells are a heterogeneous population and distinct subsets have been described to exert pro- and anti-tumour functions. In CLL, controversial reports describing the dominance of IFNγ-expressing Th1 T cells or of IL-4-producing Th2 T cells exist. Our study shows that blood of CLL patients is enriched in Th1 T cells producing high amounts of IFNγ. Moreover, we observed that their frequency remains relatively stable in CLL patients over a time course of five years. Furthermore, we provide evidence for an accumulation of Th1 T cells in the Eµ-TCL1 mouse model of CLL. As TBET (encoded by Tbx21) is a crucial transcription factor for Th1 polarization, we generated Tbx21-/- bone marrow chimaeric mice which showed a lower number of IFNγ-producing Th1 T cells, and used them for adoptive transfer of Eµ-TCL1 leukaemia. Disease development in these mice was, however, comparable to that in wild-type controls, excluding a major role for TBET-expressing Th1 cells in Eµ-TCL1 leukaemia. Collectively, our data highlight that Th1 T cells accumulate in CLL but reducing their number has no impact on disease development.


Assuntos
Regulação Leucêmica da Expressão Gênica/imunologia , Leucemia Linfocítica Crônica de Células B/imunologia , Proteínas de Neoplasias/imunologia , Neoplasias Experimentais/imunologia , Proteínas com Domínio T/imunologia , Células Th1/imunologia , Animais , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Proteínas com Domínio T/genética , Células Th1/patologia
16.
Int J Mol Sci ; 21(15)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759826

RESUMO

Small extracellular vesicles (sEVs) are nanoparticles responsible for cell-to-cell communication released by healthy and cancer cells. Different roles have been described for sEVs in physiological and pathological contexts, including acceleration of tissue regeneration, modulation of tumor microenvironment, or premetastatic niche formation, and they are discussed as promising biomarkers for diagnosis and prognosis in body fluids. Although efforts have been made to standardize techniques for isolation and characterization of sEVs, current protocols often result in co-isolation of soluble protein or lipid complexes and of other extracellular vesicles. The risk of contaminated preparations is particularly high when isolating sEVs from tissues. As a consequence, the interpretation of data aiming at understanding the functional role of sEVs remains challenging and inconsistent. Here, we report an optimized protocol for isolation of sEVs from human and murine lymphoid tissues. sEVs from freshly resected human lymph nodes and murine spleens were isolated comparing two different approaches-(1) ultracentrifugation on a sucrose density cushion and (2) combined ultracentrifugation with size-exclusion chromatography. The purity of sEV preparations was analyzed using state-of-the-art techniques, including immunoblots, nanoparticle tracking analysis, and electron microscopy. Our results clearly demonstrate the superiority of size-exclusion chromatography, which resulted in a higher yield and purity of sEVs, and we show that their functionality alters significantly between the two isolation protocols.


Assuntos
Separação Celular/métodos , Exossomos/química , Vesículas Extracelulares/química , Tecido Linfoide/química , Animais , Exossomos/genética , Humanos , Lipídeos/química , Camundongos , Ultracentrifugação
17.
Int J Cancer ; 144(11): 2762-2773, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30468254

RESUMO

The Bruton's tyrosine kinase (BTK) inhibitor ibrutinib has been shown to be highly effective in patients with chronic lymphocytic leukemia (CLL) and is approved for CLL treatment. Unfortunately, resistance and intolerance to ibrutinib has been observed in several studies, opening the door for more specific BTK inhibitors. CC-292 (spebrutinib) is a BTK inhibitor with increased specificity for BTK and less inhibition of other kinases. Our in vitro studies showed that CC-292 potently inhibited B-cell receptor signaling, activation, proliferation and chemotaxis of CLL cells. In in vivo studies using the adoptive transfer TCL1 mouse model of CLL, CC-292 reduced tumor load and normalized tumor-associated expansion of T cells and monocytes, while not affecting T cell function. Importantly, the combination of CC-292 and bendamustine impaired CLL cell proliferation in vivo and enhanced the control of CLL progression. Our results demonstrate that CC-292 is a specific BTK inhibitor with promising performance in combination with bendamustine in CLL. Further clinical trials are warranted to investigate the therapeutic efficacy of this combination regimen.


Assuntos
Acrilamidas/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Cloridrato de Bendamustina/farmacologia , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Acrilamidas/uso terapêutico , Adulto , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Idoso , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Cloridrato de Bendamustina/uso terapêutico , Medula Óssea/patologia , Modelos Animais de Doenças , Ensaios de Seleção de Medicamentos Antitumorais , Sinergismo Farmacológico , Feminino , Humanos , Leucemia Linfocítica Crônica de Células B/sangue , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Cultura Primária de Células , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas/genética , Pirimidinas/uso terapêutico , Células Tumorais Cultivadas
18.
EMBO Rep ; 18(12): 2172-2185, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29066459

RESUMO

Elevated amino acid catabolism is common to many cancers. Here, we show that glioblastoma are excreting large amounts of branched-chain ketoacids (BCKAs), metabolites of branched-chain amino acid (BCAA) catabolism. We show that efflux of BCKAs, as well as pyruvate, is mediated by the monocarboxylate transporter 1 (MCT1) in glioblastoma. MCT1 locates in close proximity to BCKA-generating branched-chain amino acid transaminase 1, suggesting possible functional interaction of the proteins. Using in vitro models, we demonstrate that tumor-excreted BCKAs can be taken up and re-aminated to BCAAs by tumor-associated macrophages. Furthermore, exposure to BCKAs reduced the phagocytic activity of macrophages. This study provides further evidence for the eminent role of BCAA catabolism in glioblastoma by demonstrating that tumor-excreted BCKAs might have a direct role in tumor immune suppression. Our data further suggest that the anti-proliferative effects of MCT1 knockdown observed by others might be related to the blocked excretion of BCKAs.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Glioblastoma/fisiopatologia , Macrófagos/fisiologia , Transportadores de Ácidos Monocarboxílicos/metabolismo , Simportadores/metabolismo , Transporte Biológico , Contagem de Células , Linhagem Celular Tumoral , Glioblastoma/imunologia , Humanos , Técnicas In Vitro , Macrófagos/imunologia , Macrófagos/patologia , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Transportadores de Ácidos Monocarboxílicos/deficiência , Transportadores de Ácidos Monocarboxílicos/genética , Proteínas Musculares/deficiência , Proteínas Musculares/genética , Fagocitose , Fenótipo , Ácido Pirúvico/metabolismo , Simportadores/antagonistas & inibidores , Simportadores/genética , Transaminases
19.
Blood ; 127(23): 2847-55, 2016 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-26941398

RESUMO

The activating mutation of the BRAF serine/threonine protein kinase (BRAF V600E) is the key driver mutation in hairy cell leukemia (HCL), suggesting opportunities for therapeutic targeting. We analyzed the course of 21 HCL patients treated with vemurafenib outside of trials with individual dosing regimens (240-1920 mg/d; median treatment duration, 90 days). Vemurafenib treatment improved blood counts in all patients, with platelets, neutrophils, and hemoglobin recovering within 28, 43, and 55 days (median), respectively. Complete remission was achieved in 40% (6/15 of evaluable patients) and median event-free survival was 17 months. Response rate and kinetics of response were independent of vemurafenib dosing. Retreatment with vemurafenib led to similar response patterns (n = 6). Pharmacodynamic analysis of BRAF V600E downstream targets showed that vemurafenib (480 mg/d) completely abrogated extracellular signal-regulated kinase phosphorylation of hairy cells in vivo. Typical side effects also occurred at low dosing regimens. We observed the development of acute myeloid lymphoma (AML) subtype M6 in 1 patient, and the course suggested disease acceleration triggered by vemurafenib. The phosphatidylinositol 3-kinase hotspot mutation (E545K) was identified in the AML clone, providing a potential novel mechanism for paradoxical BRAF activation. These data provide proof of dependence of HCL on active BRAF signaling. We provide evidence that antitumor and side effects are observed with 480 mg vemurafenib, suggesting that dosing regimens in BRAF-driven cancers could warrant reassessment in trials with implications for cost of cancer care.


Assuntos
Antineoplásicos/administração & dosagem , Indóis/administração & dosagem , Leucemia de Células Pilosas/tratamento farmacológico , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Sulfonamidas/administração & dosagem , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos/efeitos adversos , Relação Dose-Resposta a Droga , Humanos , Indóis/efeitos adversos , Leucemia de Células Pilosas/mortalidade , Pessoa de Meia-Idade , Recidiva , Retratamento , Estudos Retrospectivos , Rituximab/uso terapêutico , Sulfonamidas/efeitos adversos , Análise de Sobrevida , Resultado do Tratamento , Vemurafenib
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA