Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 8(8): 3542-3556, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35853623

RESUMO

Electrospun poly(l-lactic acid) nanofibers (PLLANFs) have been receiving considerable attention in bone tissue engineering (BTE) due to their tunable biodegradability and remarkable in vitro and in vivo biocompatibility. However, deterioration in the mechanical strength of PLLANFs during the regeneration process leads to low osteoinductive performances. Additionally, their high hydrophobicity and limited piezoelectric properties have to be addressed concerning BTE. Herein, we report an efficient approach for fabricating high-performance PLLANF hybrid scaffolds for BTE by reinforcing amphiphilic triblock copolymer pluronic F-127 (PL)-functionalized nanofillers (PL-functionalized carboxylated multiwalled carbon nanotubes (PL-cMWCNTs) and PL-functionalized exfoliated boron nitride nanosheets (PL-EBN)). The synergistic reinforcement effect from one-dimensional (1D) electrically conducting PL-cMWCNTs and two-dimensional (2D) piezoelectric PL-EBN was remarkable in PLLANFs, and the obtained PL-Hybrid (PL-cMWCNTs + PL-EBN) reinforced scaffolds have outperformed the mechanical strength, wettability, and piezoelectric performances of pristine PLLANFs. Consequently, in vitro biocompatibility results reveal the enhanced proliferation of MC3T3-E1 cells on PL-Hybrid nanofiber scaffolds. Furthermore, the ALP activity, ARS staining, and comparable osteogenic gene expression results demonstrated significant osteogenic differentiation of MC3T3-E1 cells on PL-Hybrid nanofiber scaffolds than on the pristine PLLANF scaffold. Thus, the reported approach for constructing high-performance piezoelectric biodegradable scaffolds for BTE by the synergistic effect of PL-cMWCNTs and PL-EBN holds great promise in tissue engineering applications.


Assuntos
Nanotubos de Carbono , Regeneração Óssea , Compostos de Boro , Osteogênese , Alicerces Teciduais
2.
ACS Appl Mater Interfaces ; 10(49): 42068-42076, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30462488

RESUMO

In recent years, the concept of combined therapy using gold hybrid nanomaterials has been broadly adopted to pioneer new anticancer treatments. However, their synergistic anticancer effects have yet to be thoroughly investigated. Herein,a hybrid gold nanobipyramid nanostructure coated with molybdenum disulfide (MoS2) semiconductor (AuNBPs@MoS2) was proposed as a smart nanozyme for anticancer therapy and two-photon bioimaging. The hybrid material showed dramatically enhanced localized surface plasmon resonance property under excitation owing to its anisotropic nature, coupled with the rich electron density in MoS2, resulting in the superior in situ photogeneration of reactive oxidative species (ROS - 1O2, •OH). We demonstrated that the synergistic effect of enhanced photothermal conversion and generation of ROS could increase the anticancer effect of AuNBPs@MoS2. Two-photon luminescence imaging confirmed that AuNBPs@MoS2 was successfully internalized in cancer cells and that simultaneous anticancer treatments based on catalytic and photothermal therapy could be achieved. This study highlighted, for the first time, a novel approach of plasmon-mediated powerful anticancer therapy and imaging via the unprecedented combination of anisotropic AuNBPs and two-dimensional MoS2 material.


Assuntos
Dissulfetos , Ouro , Molibdênio , Nanopartículas , Neoplasias , Fotoquimioterapia , Linhagem Celular Tumoral , Dissulfetos/química , Dissulfetos/farmacologia , Ouro/química , Ouro/farmacologia , Humanos , Microscopia de Fluorescência por Excitação Multifotônica , Molibdênio/química , Molibdênio/farmacologia , Nanopartículas/química , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA