Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Appl Opt ; 61(28): 8286-8301, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36256141

RESUMO

Sub-aperture fabrication techniques such as diamond turning, ion beam figuring, and bonnet polishing are indispensable tools in today's optical fabrication chain. Each of these tools addresses different figure and roughness imperfections corresponding to a broad spatial frequency range. Their individual effects, however, cannot be regarded as completely independent from each other due to the concurrent formation of form and finish errors, particularly in the mid-spatial frequency (MSF) region. Deterministic Zernike polynomials and statistical power spectral density (PSD) functions are often used to represent form and finish errors, respectively. Typically, both types of surface errors are treated separately when their impact on optical performance is considered: (i) wave aberrations caused by figure errors and (ii) stray light resulting from surface roughness. To fill the gap between deterministic and statistical descriptions, a generalized surface description is of great importance for bringing versatility to the entire optical fabrication chain by enabling easy and quick exchange of surface topography data between three disciplines: optical design, manufacturing, and characterization. In this work, we present a surface description by stitching the amplitude and unwrapped phase spectra of several surface topography measurements at different magnifications. An alternative representation of surface errors at different regimes is proposed, allowing us to bridge the gap between figure and finish as well as to describe the well-known MSF errors.

2.
Appl Opt ; 59(5): A143-A149, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-32225366

RESUMO

Antireflective coatings are widely applied on transparent optical components to reduce reflections at surfaces. Nanoporous silica (NP SiO2) thin films with tailored refractive index properties are used as single-layer antireflective coatings providing nearly zero reflectivity. In this work, light scattering properties of nanoporous silica single-layer antireflective coatings are investigated in order to determine their optical quality by means of total scattering and detailed roughness analysis. Scattering and roughness characterization of the samples coated with different film thicknesses were realized to distinguish the influences of nanopores and surface roughness on scattering losses in the visible (VIS) spectral range. No significant correlation of scattering losses with the film thickness is found, showing negligible influence of the nanopores to the overall scattering properties compared with the dominating effect of interface roughness. Moreover, the scattering losses from coated fused silica glass were observed as low as 20 ppm (0.002%). It is confirmed that NP SiO2 single-layer antireflective coatings are suitable to be used in optics demanding extremely low scattering characteristics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA