Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 117(7): 3405-3414, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32005712

RESUMO

Drug targeting to inflammatory brain pathologies such as stroke and traumatic brain injury remains an elusive goal. Using a mouse model of acute brain inflammation induced by local tumor necrosis factor alpha (TNFα), we found that uptake of intravenously injected antibody to vascular cell adhesion molecule 1 (anti-VCAM) in the inflamed brain is >10-fold greater than antibodies to transferrin receptor-1 and intercellular adhesion molecule 1 (TfR-1 and ICAM-1). Furthermore, uptake of anti-VCAM/liposomes exceeded that of anti-TfR and anti-ICAM counterparts by ∼27- and ∼8-fold, respectively, achieving brain/blood ratio >300-fold higher than that of immunoglobulin G/liposomes. Single-photon emission computed tomography imaging affirmed specific anti-VCAM/liposome targeting to inflamed brain in mice. Intravital microscopy via cranial window and flow cytometry showed that in the inflamed brain anti-VCAM/liposomes bind to endothelium, not to leukocytes. Anti-VCAM/LNP selectively accumulated in the inflamed brain, providing de novo expression of proteins encoded by cargo messenger RNA (mRNA). Anti-VCAM/LNP-mRNA mediated expression of thrombomodulin (a natural endothelial inhibitor of thrombosis, inflammation, and vascular leakage) and alleviated TNFα-induced brain edema. Thus VCAM-directed nanocarriers provide a platform for cerebrovascular targeting to inflamed brain, with the goal of normalizing the integrity of the blood-brain barrier, thus benefiting numerous brain pathologies.


Assuntos
Anticorpos/administração & dosagem , Barreira Hematoencefálica/efeitos dos fármacos , Encefalite/tratamento farmacológico , Endotélio Vascular/efeitos dos fármacos , Nanomedicina/métodos , Animais , Barreira Hematoencefálica/imunologia , Encefalite/genética , Encefalite/imunologia , Endotélio Vascular/imunologia , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/imunologia , Camundongos , Receptores da Transferrina/genética , Receptores da Transferrina/imunologia , Trombomodulina/genética , Trombomodulina/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/imunologia
2.
J Water Health ; 20(1): 1-11, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35100150

RESUMO

Over 1 million people in New Jersey (NJ) are estimated to receive drinking water from private wells. The most commonly detected contaminants in NJ private well water are naturally occurring arsenic and gross alpha (8.3 and 10.9%, respectively). Between 2015 and 2018, three free and voluntary private well testing events tested a total of 571 at-risk wells and 226 (40%) were identified as having one or more contaminants exceeding drinking water standards. Participants were invited to complete a survey to evaluate household characteristics, participant experience, and private well stewardship behavior patterns. Of 529 delivered surveys, 211 (40%) participants completed surveys. Among respondents, 63% reported plans to test their private wells in the future. Among failed wells, 45% of households reported performing mitigative action in response to the event, either through the installation of water treatment system or switching to bottled water. The survey evaluation identified previous knowledge of well contamination risks and discussing test results with a third party as important factors for promoting self-reported stewardship behavior. The evaluation provides guidance for outreach organizers to develop effective testing events and further considers the private well owners' experience of the outreach events to identify information for 'best practices' and improvements of future programs.


Assuntos
Arsênio , Poluentes Químicos da Água , Arsênio/análise , Humanos , New Jersey , Poluentes Químicos da Água/análise , Abastecimento de Água , Poços de Água
3.
Brain Behav Immun ; 88: 363-380, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32243899

RESUMO

Electronic cigarette (e-cigarette) use has grown substantially since inception, particularly among adolescents and combustible tobacco users. Several cigarette smoke constituents with known neurovascular effect are present in e-cigarette liquids or formed during the vapor generation. The present study establishes inhaled models of cigarette and e-cigarette use with normalized nicotine delivery, then characterizes the impact on blood-brain barrier (BBB) function. Sequencing of microvessel RNA following exposure revealed downregulation of several genes with critical roles in BBB function. Reduced protein expression of Occludin and Glut1 is also observed at the tight junction in all groups following exposure. Pro-inflammatory changes in leukocyte-endothelial cell interaction are also noted, and mice exposed to nicotine-free e-cigarettes have impaired novel object recognition performance. On this basis, it is concluded that long term e-cigarette use may adversely impact neurovascular health. The observed effects are noted to be partly independent of nicotine content and nicotine may even serve to moderate the effects of non-nicotinic components on the blood-brain barrier.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Vaping , Animais , Barreira Hematoencefálica , Células Endoteliais , Camundongos , Nicotina , Vaping/efeitos adversos
4.
Sci Rep ; 10(1): 18828, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33110185

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Sci Rep ; 10(1): 7274, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32350344

RESUMO

Cognitive impairment is a well-known complication of diabetes mellitus (DM). Microvascular compromise was described one DM complication. Recently we showed blood brain barrier (BBB) permeability and memory loss are associated with diminution of tight junctions (TJ) in brain endothelium and pericyte coverage and inflammation in cerebral microvessels and brain tissue paralleling hyperglycemia in mice of both DM types. The current study demonstrates that exposure of brain microvessels to hyperglycemic conditions or advanced glycation end products (AGEs) ex vivo resulted in significant abnormalities in membranous distribution of TJ proteins. We found significant increase in the amount of extracellular vesicles (EVs) isolated from DM mice and enhanced presence of TJ proteins, occludin and claudin-5, on EVs. Exposure of BMVECs to high glucose and AGEs led to significant augmentation of ICAM and VCAM expression, elevated leukocyte adhesion to and migration across BMVEC monolayers, and increased BBB permeability in vitro. Pericytes exposed to hyperglycemia and AGEs displayed diminished expression of integrin α1, PDGF-R1ß and connexin-43. Our findings indicate BBB compromise in DM ex vivo, in vitro and in vivo models in association with BMVEC/pericyte dysfunction and inflammation. Prevention of BBB injury may be a new therapeutic approach to avert cognitive demise in DM.


Assuntos
Barreira Hematoencefálica/metabolismo , Claudina-5/metabolismo , Vesículas Extracelulares/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Hiperglicemia/metabolismo , Ocludina/biossíntese , Ocludina/metabolismo , Animais , Barreira Hematoencefálica/patologia , Vesículas Extracelulares/patologia , Regulação da Expressão Gênica , Hiperglicemia/patologia , Masculino , Camundongos , Pericitos/metabolismo , Pericitos/patologia
6.
Sci Rep ; 10(1): 13977, 2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32814790

RESUMO

Tobacco smoking is common in HIV-infected patients, and is prevalent among intravenous opiate abusers. Conversely, intravenous opiate abusers are more likely HIV-infected, and opiate abuse is associated with more severe neuroinflammation. Given the coincident use of tobacco smoking among HIV-infected intravenous drug users (IVDUs), we set out to study the effects of smoke exposure, chronic morphine administration, and HIV infection using the NSG humanized mouse model. Our results show that smoke, morphine, and the combination promotes the decline in CD4+ T cells in HIV-infected mice. Further, chronic morphine administration increases the numbers of circulating CD8+ T cells which express the inhibitory receptor PD-1, as well as the cytolytic proteins perforin and granzyme B in the infected mice. We also found that the combination of smoke and morphine inhibited the expression of IL-1α, IL-4 and IL-17A. Finally, the combination of smoke and morphine exposure induces microglial activation following infection, as well as in the absence of HIV infection. To our knowledge, this is the first report to assess the combined effects of smoke and chronic morphine exposure on the inflammation associated with HIV infection, and demonstrate that these two insults exert significant neuroinflammatory activity.


Assuntos
Sistema Nervoso Central/efeitos dos fármacos , Infecções por HIV/imunologia , HIV-1/imunologia , Inflamação/imunologia , Morfina/administração & dosagem , Poluição por Fumaça de Tabaco/efeitos adversos , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/patologia , Citocinas/sangue , Citocinas/imunologia , Modelos Animais de Doenças , Infecções por HIV/virologia , HIV-1/fisiologia , Humanos , Inflamação/etiologia , Inflamação/virologia , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Entorpecentes/administração & dosagem
7.
Front Immunol ; 11: 573677, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042154

RESUMO

Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by multi-organ damage. Neuropsychiatric lupus (NPSLE) is one of the most common manifestations of human SLE, often causing depression. Interferon-α (IFNα) is a central mediator in disease pathogenesis. Administration of IFNα to patients with chronic viral infections or cancers causes depressive symptoms. Angiotensin-converting enzyme (ACE) is part of the kallikrein-kinin/renin-angiotensin (KKS/RAS) system that regulates many physiological processes, including inflammation, and brain functions. It is known that ACE degrades bradykinin (BK) into inactive peptides. We have previously shown in an in vitro model of mouse bone-marrow-derived dendritic cells (BMDC) and human peripheral blood mononuclear cells that captopril (a centrally acting ACE inhibitor-ACEi) suppressed Type I IFN responsive gene (IRG) expression. In this report, we used the MRL/lpr lupus-prone mouse model, an established model to study NPSLE, to determine the in vivo effects of captopril on Type I IFN and associated immune responses in the periphery and brain and effects on behavior. Administering captopril to MRL/lpr mice decreased expression of IRGs in brain, spleen and kidney, decreased circulating and tissue IFNα levels, decreased microglial activation (IBA-1 expression) and reduced depressive-like behavior. Serotonin levels that are decreased in depression were increased by captopril treatment. Captopril also reduced autoantibody levels in plasma and immune complex deposition in kidney and brain. Thus, ACEi's may have potential for therapeutic use for systemic and NPSLE.


Assuntos
Inibidores da Enzima Conversora de Angiotensina/administração & dosagem , Encéfalo/efeitos dos fármacos , Captopril/administração & dosagem , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Interferon-alfa/administração & dosagem , Vasculite Associada ao Lúpus do Sistema Nervoso Central/tratamento farmacológico , Administração Oral , Animais , Autoanticorpos/metabolismo , Comportamento Animal/efeitos dos fármacos , Encéfalo/imunologia , Encéfalo/metabolismo , Modelos Animais de Doenças , Feminino , Infusões Subcutâneas , Injeções Intraperitoneais , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/metabolismo , Rim/efeitos dos fármacos , Rim/imunologia , Rim/metabolismo , Vasculite Associada ao Lúpus do Sistema Nervoso Central/imunologia , Vasculite Associada ao Lúpus do Sistema Nervoso Central/metabolismo , Camundongos Endogâmicos MRL lpr , Microglia/efeitos dos fármacos , Microglia/imunologia , Microglia/metabolismo , Transdução de Sinais , Baço/efeitos dos fármacos , Baço/imunologia , Baço/metabolismo
8.
Mol Neurobiol ; 56(3): 1883-1896, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29974394

RESUMO

End organ injury in diabetes mellitus (DM) is driven by microvascular compromise (including diabetic retinopathy and nephropathy). Cognitive impairment is a well-known complication of DM types 1 and 2; however, its mechanism(s) is(are) not known. We hypothesized that blood-brain barrier (BBB) compromise plays a key role in cognitive decline in DM. Using a DM type 1 model (streptozotocin injected C57BL/6 mice) and type 2 model (leptin knockout obese db/db mice), we showed enhanced BBB permeability and memory loss (Y maze, water maze) that are associated with hyperglycemia. Gene profiling in isolated microvessels from DM type 1 animals demonstrated deregulated expression of 54 genes related to angiogenesis, inflammation, vasoconstriction/vasodilation, and platelet activation pathways by at least 2-fold (including eNOS, TNFα, TGFß1, VCAM-1, E-selectin, several chemokines, and MMP9). Further, the magnitude of gene expression was linked to degree of cognitive decline in DM type 1 animals. Gene analysis in brain microvessels of DM type 2 db/db animals showed alterations of similar genes as in DM 1 model, some to an even greater extent. Neuropathologic analyses of brain tissue derived from DM mice showed microglial activation, expression of ICAM-1, and attenuated coverage of pericytes compared to controls. There was a significant upregulation of inflammatory genes in brain tissue in both DM models. Taken together, our findings indicate that BBB compromise in DM in vivo models and its association with memory deficits, gene alterations in brain endothelium, and neuroinflammation. Prevention of BBB injury may be a new therapeutic approach to prevent cognitive demise in DM.


Assuntos
Barreira Hematoencefálica/patologia , Encéfalo/patologia , Diabetes Mellitus Experimental/patologia , Hiperglicemia/patologia , Inflamação/patologia , Transtornos da Memória/patologia , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/patologia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Hiperglicemia/metabolismo , Inflamação/metabolismo , Aprendizagem em Labirinto , Transtornos da Memória/metabolismo , Camundongos
9.
Front Immunol ; 9: 156, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29456540

RESUMO

The Kallikrein-Kinin System (KKS), comprised of kallikreins (klks), bradykinins (BKs) angiotensin-converting enzyme (ACE), and many other molecules, regulates a number of physiological processes, including inflammation, coagulation, angiogenesis, and control of blood pressure. In this report, we show that KKS regulates Type I IFN responses, thought to be important in lupus pathogenesis. We used CpG (TLR9 ligand), R848 (TLR7 ligand), or recombinant IFN-α to induce interferon-stimulated genes (ISGs) and proteins, and observed that this response was markedly diminished by BKs, klk1 (tissue kallikrein), or captopril (an ACE inhibitor). BKs significantly decreased the ISGs induced by TLRs in vitro and in vivo (in normal and lupus-prone mice), and in human PBMCs, especially the induction of Irf7 gene (p < 0.05), the master regulator of Type I IFNs. ISGs induced by IFN-α were also suppressed by the KKS. MHC Class I upregulation, a classic response to Type I IFNs, was reduced by BKs in murine dendritic cells (DCs). BKs decreased phosphorylation of STAT2 molecules that mediate IFN signaling. Among the secreted pro-inflammatory cytokines/chemokines analyzed (IL-6, IL12p70, and CXCL10), the strongest suppressive effect was on CXCL10, a highly Type I IFN-dependent cytokine, upon CpG stimulation, both in normal and lupus-prone DCs. klks that break down into BKs, also suppressed CpG-induced ISGs in murine DCs. Captopril, a drug that inhibits ACE and increases BK, suppressed ISGs, both in mouse DCs and human PBMCs. The effects of BK were reversed with indomethacin (compound that inhibits production of PGE2), suggesting that BK suppression of IFN responses may be mediated via prostaglandins. These results highlight a novel regulatory mechanism in which members of the KKS control the Type I IFN response and suggest a role for modulators of IFNs in the pathogenesis of lupus and interferonopathies.


Assuntos
Bradicinina/imunologia , Interferon Tipo I/imunologia , Sistema Calicreína-Cinina , Animais , Captopril/farmacologia , Quimiocina CXCL10/imunologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Feminino , Regulação da Expressão Gênica , Humanos , Imidazóis/farmacologia , Fator Regulador 7 de Interferon/genética , Interferon-alfa/farmacologia , Interleucina-12/metabolismo , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Oligodesoxirribonucleotídeos/farmacologia , Proteínas Recombinantes/farmacologia , Fator de Transcrição STAT2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Calicreínas Teciduais/imunologia , Ativação Transcricional , Regulação para Cima/efeitos dos fármacos
10.
Sci Transl Med ; 7(301): 301ra132, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26290414

RESUMO

First identified in 2012, Middle East respiratory syndrome (MERS) is caused by an emerging human coronavirus, which is distinct from the severe acute respiratory syndrome coronavirus (SARS-CoV), and represents a novel member of the lineage C betacoronoviruses. Since its identification, MERS coronavirus (MERS-CoV) has been linked to more than 1372 infections manifesting with severe morbidity and, often, mortality (about 495 deaths) in the Arabian Peninsula, Europe, and, most recently, the United States. Human-to-human transmission has been documented, with nosocomial transmission appearing to be an important route of infection. The recent increase in cases of MERS in the Middle East coupled with the lack of approved antiviral therapies or vaccines to treat or prevent this infection are causes for concern. We report on the development of a synthetic DNA vaccine against MERS-CoV. An optimized DNA vaccine encoding the MERS spike protein induced potent cellular immunity and antigen-specific neutralizing antibodies in mice, macaques, and camels. Vaccinated rhesus macaques seroconverted rapidly and exhibited high levels of virus-neutralizing activity. Upon MERS viral challenge, all of the monkeys in the control-vaccinated group developed characteristic disease, including pneumonia. Vaccinated macaques were protected and failed to demonstrate any clinical or radiographic signs of pneumonia. These studies demonstrate that a consensus MERS spike protein synthetic DNA vaccine can induce protective responses against viral challenge, indicating that this strategy may have value as a possible vaccine modality against this emerging pathogen.


Assuntos
Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Vacinas de DNA/uso terapêutico , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Camelus , Macaca mulatta , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA