Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 55(22): 6433-7, 2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27094703

RESUMO

A surfactant-free solution methodology, simply using water as a solvent, has been developed for the straightforward synthesis of single-phase orthorhombic SnSe nanoplates in gram quantities. Individual nanoplates are composed of {100} surfaces with {011} edge facets. Hot-pressed nanostructured compacts (Eg ≈0.85 eV) exhibit excellent electrical conductivity and thermoelectric power factors (S(2) σ) at 550 K. S(2) σ values are 8-fold higher than equivalent materials prepared using citric acid as a structure-directing agent, and electrical properties are comparable to the best-performing, extrinsically doped p-type polycrystalline tin selenides. The method offers an energy-efficient, rapid route to p-type SnSe nanostructures.

2.
Sci Rep ; 10(1): 58, 2020 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31919401

RESUMO

The accumulation of soiling on photovoltaic (PV) modules affects PV systems worldwide. Soiling consists of mineral dust, soot particles, aerosols, pollen, fungi and/or other contaminants that deposit on the surface of PV modules. Soiling absorbs, scatters, and reflects a fraction of the incoming sunlight, reducing the intensity that reaches the active part of the solar cell. Here, we report on the comparison of naturally accumulated soiling on coupons of PV glass soiled at seven locations worldwide. The spectral hemispherical transmittance was measured. It was found that natural soiling disproportionately impacts the blue and ultraviolet (UV) portions of the spectrum compared to the visible and infrared (IR). Also, the general shape of the transmittance spectra was similar at all the studied sites and could adequately be described by a modified form of the Ångström turbidity equation. In addition, the distribution of particles sizes was found to follow the IEST-STD-CC 1246E cleanliness standard. The fractional coverage of the glass surface by particles could be determined directly or indirectly and, as expected, has a linear correlation with the transmittance. It thus becomes feasible to estimate the optical consequences of the soiling of PV modules from the particle size distribution and the cleanliness value.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA