Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Am Chem Soc ; 144(44): 20288-20297, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36301712

RESUMO

Delivering cargo molecules across the plasma membrane is critical for biomedical research, and the need to develop molecularly well-defined tags that enable cargo transportation is ever-increasing. We report here a hydrophilic endocytosis-promoting peptide (EPP6) rich in hydroxyl groups with no positive charge. EPP6 can transport a wide array of small-molecule cargos into a diverse panel of animal cells. Mechanistic studies revealed that it entered the cells through a caveolin- and dynamin-dependent endocytosis pathway, mediated by the surface receptor fibrinogen C domain-containing protein 1. After endocytosis, EPP6 trafficked through early and late endosomes within 30 min. Over time, EPP6 partitioned among cytosol, lysosomes, and some long-lived compartments. It also demonstrated prominent transcytosis abilities in both in vitro and in vivo models. Our study proves that positive charge is not an indispensable feature for hydrophilic cell-penetrating peptides and provides a new category of molecularly well-defined delivery tags for biomedical applications.


Assuntos
Peptídeos Penetradores de Células , Endocitose , Animais , Endossomos/metabolismo , Peptídeos Penetradores de Células/metabolismo , Lisossomos/metabolismo , Interações Hidrofóbicas e Hidrofílicas
2.
Nucleic Acids Res ; 46(3): 1501-1512, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29240934

RESUMO

In Streptomyces coelicolor, we identified a para-hydroxybenzoate (PHB) hydroxylase, encoded by gene pobA (SCO3084), which is responsible for conversion of PHB into PCA (protocatechuic acid), a substrate of the ß-ketoadipate pathway which yields intermediates of the Krebs cycle. We also found that the transcription of pobA is induced by PHB and is negatively regulated by the product of SCO3209, which we named PobR. The product of this gene is highly unusual in that it is the apparent fusion of two IclR family transcription factors. Bioinformatic analyses, in vivo transcriptional assays, electrophoretic mobility shift assays (EMSAs), DNase I footprinting, and isothermal calorimetry (ITC) were used to elucidate the regulatory mechanism of PobR. We found that PobR loses its high affinity for DNA (i.e., the pobA operator) in the presence of PHB, the inducer of pobA transcription. PHB binds to PobR with a KD of 5.8 µM. Size-exclusion chromatography revealed that PobR is a dimer in the absence of PHB and a monomer in the presence of PHB. The crystal structure of PobR in complex with PHB showed that only one of the two IclR ligand binding domains was occupied, and defined how the N-terminal ligand binding domain engages the effector ligand.


Assuntos
4-Hidroxibenzoato-3-Mono-Oxigenase/química , Proteínas de Bactérias/química , Regulação Bacteriana da Expressão Gênica , Parabenos/química , Streptomyces coelicolor/metabolismo , Fatores de Transcrição/química , 4-Hidroxibenzoato-3-Mono-Oxigenase/genética , 4-Hidroxibenzoato-3-Mono-Oxigenase/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , Biotransformação , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Hidroxibenzoatos/química , Hidroxibenzoatos/metabolismo , Cinética , Ligantes , Modelos Moleculares , Parabenos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Streptomyces coelicolor/genética , Especificidade por Substrato , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
3.
Proc Natl Acad Sci U S A ; 111(43): E4587-95, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25267638

RESUMO

Caseinolytic peptidase P (ClpP), a double-ring peptidase with 14 subunits, collaborates with ATPases associated with diverse activities (AAA+) partners to execute ATP-dependent protein degradation. Although many ClpP enzymes self-assemble into catalytically active homo-tetradecamers able to cleave small peptides, the Mycobacterium tuberculosis enzyme consists of discrete ClpP1 and ClpP2 heptamers that require a AAA+ partner and protein-substrate delivery or a peptide agonist to stabilize assembly of the active tetradecamer. Here, we show that cyclic acyldepsipeptides (ADEPs) and agonist peptides synergistically activate ClpP1P2 by mimicking AAA+ partners and substrates, respectively, and determine the structure of the activated complex. Our studies establish the basis of heteromeric ClpP1P2 assembly and function, reveal tight coupling between the conformations of each ring, show that ADEPs bind only to one ring but appear to open the axial pores of both rings, provide a foundation for rational drug development, and suggest strategies for studying the roles of individual ClpP1 and ClpP2 rings in Clp-family proteolysis.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , Modelos Biológicos , Mycobacterium tuberculosis/enzimologia , Peptídeo Hidrolases/metabolismo , Subunidades Proteicas/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Ativação Enzimática , Estabilidade Enzimática , Peptídeos Cíclicos/química , Peptídeos Cíclicos/metabolismo , Ligação Proteica , Multimerização Proteica , Subunidades Proteicas/metabolismo , Especificidade por Substrato
4.
J Bacteriol ; 197(17): 2747-53, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26031910

RESUMO

UNLABELLED: Pupylation is a posttranslational modification peculiar to actinobacteria wherein proteins are covalently modified with a small protein called the prokaryotic ubiquitin-like protein (Pup). Like ubiquitination in eukaryotes, this phenomenon has been associated with proteasome-mediated protein degradation in mycobacteria. Here, we report studies of pupylation in a streptomycete that is phylogentically related to mycobacteria. We constructed mutants of Streptomyces coelicolor lacking PafA (Pup ligase), the proteasome, and the Pup-proteasome system. We found that these mutants share a high susceptibility to oxidative stress compared to that of the wild-type strain. Remarkably, we found that the pafA null mutant has a sporulation defect not seen in strains lacking the Pup-proteasome system. In proteomics experiments facilitated by an affinity-tagged variant of Pup, we identified 110 pupylated proteins in S. coelicolor strains having and lacking genes encoding the 20S proteasome. Our findings shed new light on this unusual posttranslational modification and its role in Streptomyces physiology. IMPORTANCE: The presence of 20S proteasomes reminiscent of those in eukaryotes and a functional equivalent of ubiquitin, known as the prokaryotic ubiquitin-like protein (Pup), in actinobacteria have motivated reevaluations of protein homeostasis in prokaryotes. Though the Pup-proteasome system has been studied extensively in mycobacteria, it is much less understood in streptomycetes, members of a large genus of actinobacteria known for highly choreographed life cycles in which phases of morphological differentiation, sporulation, and secondary metabolism are often regulated by protein metabolism. Here, we define constituents of the pupylome in Streptomyces coelicolor for the first time and present new evidence that links pupylation and the oxidative stress response in this bacterium. Surprisingly, we found that the Pup ligase has a Pup-independent role in sporulation.


Assuntos
Proteínas de Bactérias/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Streptomyces coelicolor/fisiologia , Ubiquitinas/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Dados de Sequência Molecular , Mutação , Proteômica , Pupa/genética , Pupa/metabolismo , Streptomyces coelicolor/genética , Streptomyces coelicolor/metabolismo , Ubiquitinas/química , Ubiquitinas/genética
5.
Chembiochem ; 16(13): 1875-1879, 2015 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-26147653

RESUMO

The cyclic acyldepsipeptide (ADEP) antibiotics act by binding the ClpP peptidase and dysregulating its activity. Their exocyclic N-acylphenylalanine is thought to structurally mimic the ClpP-binding, (I/L)GF tripeptide loop of the peptidase's accessory ATPases. We found that ADEP analogues with exocyclic N-acyl tripeptides or dipeptides resembling the (I/L)GF motif were weak ClpP activators and had no bioactivity. In contrast, ADEP analogues possessing difluorophenylalanine N-capped with methyl-branched acyl groups-like the side chains of residues in the (I/L)GF motifs-were superior to the parent ADEP with respect to both ClpP activation and bioactivity. We contend that the ADEP's N-acylphenylalanine moiety is not simply a stand-in for the ATPases' (I/L)GF motif; it likely has physicochemical properties that are better suited for ClpP binding. Further, our finding that the methyl-branching on the acyl group of the ADEPs improves activity opens new avenues for optimization.

6.
Bioorg Med Chem ; 23(18): 6218-22, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26296913

RESUMO

Natural products that inhibit the proteasome have been fruitful starting points for the development of drug candidates. Those of the syringolin family have been underexploited in this context. Using the published model for substrate mimicry by the syringolins and knowledge about the substrate preferences of the proteolytic subunits of the human proteasome, we have designed, synthesized, and evaluated syringolin analogs. As some of our analogs inhibit the activity of the proteasome with second-order rate constants 5-fold greater than that of the methyl ester of syringolin B, we conclude that the substrate mimicry model for the syringolins is valid. The improvements in in vitro potency and the activities of particular analogs against leukemia cell lines are strong bases for further development of the syringolins as anti-cancer drugs.


Assuntos
Antineoplásicos/química , Peptídeos Cíclicos/química , Inibidores de Proteassoma/química , Antineoplásicos/metabolismo , Antineoplásicos/toxicidade , Produtos Biológicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/toxicidade , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/metabolismo , Inibidores de Proteassoma/toxicidade , Ligação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
7.
Nucleic Acids Res ; 41(6): 3888-900, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23396446

RESUMO

MarR family proteins constitute a group of >12 000 transcriptional regulators encoded in bacterial and archaeal genomes that control gene expression in metabolism, stress responses, virulence and multi-drug resistance. There is much interest in defining the molecular mechanism by which ligand binding attenuates the DNA-binding activities of these proteins. Here, we describe how PcaV, a MarR family regulator in Streptomyces coelicolor, controls transcription of genes encoding ß-ketoadipate pathway enzymes through its interaction with the pathway substrate, protocatechuate. This transcriptional repressor is the only MarR protein known to regulate this essential pathway for aromatic catabolism. In in vitro assays, protocatechuate and other phenolic compounds disrupt the PcaV-DNA complex. We show that PcaV binds protocatechuate in a 1:1 stoichiometry with the highest affinity of any MarR family member. Moreover, we report structures of PcaV in its apo form and in complex with protocatechuate. We identify an arginine residue that is critical for ligand coordination and demonstrate that it is also required for binding DNA. We propose that interaction of ligand with this arginine residue dictates conformational changes that modulate DNA binding. Our results provide new insights into the molecular mechanism by which ligands attenuate DNA binding in this large family of transcription factors.


Assuntos
Proteínas de Bactérias/química , Proteínas de Ligação a DNA/química , Proteínas Repressoras/química , Streptomyces coelicolor/genética , Arginina/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Hidroxibenzoatos/química , Ligantes , Modelos Moleculares , Regiões Operadoras Genéticas , Fenóis/química , Ligação Proteica , Conformação Proteica , Proteínas Repressoras/metabolismo
8.
J Am Chem Soc ; 136(5): 1922-9, 2014 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24422534

RESUMO

The cyclic acyldepsipeptide (ADEP) antibiotics are a new class of antibacterial agents that kill bacteria via a mechanism that is distinct from all clinically used drugs. These molecules bind and dysregulate the activity of the ClpP peptidase. The potential of these antibiotics as antibacterial drugs has been enhanced by the elimination of pharmacological liabilities through medicinal chemistry efforts. Here, we demonstrate that the ADEP conformation observed in the ADEP-ClpP crystal structure is fortified by transannular hydrogen bonding and can be further stabilized by judicious replacement of constituent amino acids within the peptidolactone core structure with more conformationally constrained counterparts. Evidence supporting constraint of the molecule into the bioactive conformer was obtained by measurements of deuterium-exchange kinetics of hydrogens that were proposed to be engaged in transannular hydrogen bonds. We show that the rigidified ADEP analogs bind and activate ClpP at lower concentrations in vitro. Remarkably, these compounds have up to 1200-fold enhanced antibacterial activity when compared to those with the peptidolactone core structure common to two ADEP natural products. This study compellingly demonstrates how rational modulation of conformational dynamics may be used to improve the bioactivities of natural products.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Depsipeptídeos/química , Depsipeptídeos/farmacologia , Antibacterianos/síntese química , Cristalografia por Raios X , Depsipeptídeos/síntese química , Enterococcus faecalis/efeitos dos fármacos , Ligação de Hidrogênio , Testes de Sensibilidade Microbiana , Conformação Proteica , Staphylococcus aureus/efeitos dos fármacos , Streptococcus pneumoniae/efeitos dos fármacos , Relação Estrutura-Atividade
9.
Chembiochem ; 15(15): 2216-20, 2014 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-25212124

RESUMO

The development of new antibacterial agents, particularly those with unique biological targets, is essential to keep pace with the inevitable emergence of drug resistance in pathogenic bacteria. We identified the minimal structural component of the cyclic acyldepsipeptide (ADEP) antibiotics that exhibits antibacterial activity. We found that N-acyldifluorophenylalanine fragments function via the same mechanism of action as ADEPs, as evidenced by the requirement of ClpP for the fragments' antibacterial activity, the ability of fragments to activate Bacillus subtilis ClpP in vitro, and the capacity of an N-acyldifluorophenylalanine affinity matrix to capture ClpP from B. subtilis cell lysates. N-acyldifluorophenylalanine fragments are much simpler in structure than the full ADEPs and are also highly amenable to structural diversification. Thus, the stage has been set for the development of non-peptide activators of ClpP that can be used as antibacterial agents.


Assuntos
Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Depsipeptídeos/farmacologia , Endopeptidase Clp/antagonistas & inibidores , Antibacterianos/química , Bacillus subtilis/enzimologia , Depsipeptídeos/química , Relação Dose-Resposta a Droga , Endopeptidase Clp/química , Endopeptidase Clp/metabolismo , Ativação Enzimática/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
10.
Bioorg Med Chem ; 22(17): 4836-47, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25087050

RESUMO

Human polyoma- and papillomaviruses are non-enveloped DNA viruses that cause severe pathologies and mortalities. Under circumstances of immunosuppression, JC polyomavirus causes a fatal demyelinating disease called progressive multifocal leukoencephalopathy (PML) and the BK polyomavirus is the etiological agent of polyomavirus-induced nephropathy and hemorrhagic cystitis. Human papillomavirus type 16, another non-enveloped DNA virus, is associated with the development of cancers in tissues like the uterine cervix and oropharynx. Currently, there are no approved drugs or vaccines to treat or prevent polyomavirus infections. We recently discovered that the small molecule Retro-2(cycl), an inhibitor of host retrograde trafficking, blocked infection by several human and monkey polyomaviruses. Here, we report diversity-oriented syntheses of Retro-2(cycl) and evaluation of the resulting analogs using an assay of human cell infections by JC polyomavirus. We defined structure-activity relationships and also discovered analogs with significantly improved potency as suppressors of human polyoma- and papillomavirus infection in vitro. Our findings represent an advance in the development of drug candidates that can broadly protect humans from non-enveloped DNA viruses and toxins that exploit retrograde trafficking as a means for cell entry.


Assuntos
Transporte Axonal/efeitos dos fármacos , Vírus JC/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/virologia , Papillomaviridae/efeitos dos fármacos , Quinazolinas/farmacologia , Internalização do Vírus/efeitos dos fármacos , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Vírus JC/fisiologia , Estrutura Molecular , Papillomaviridae/fisiologia , Quinazolinas/síntese química , Quinazolinas/química , Relação Estrutura-Atividade
11.
ACS Chem Biol ; 18(4): 724-733, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32083462

RESUMO

Proteolytic complexes in Mycobacterium tuberculosis (Mtb), the deadliest bacterial pathogen, are major foci in tuberculosis drug development programs. The Clp proteases, which are essential for Mtb viability, are high-priority targets. These proteases function through the collaboration of ClpP1P2, a barrel-shaped heteromeric peptidase, with associated ATP-dependent chaperones like ClpX and ClpC1 that recognize and unfold specific substrates in an ATP-dependent fashion. The critical interaction of the peptidase and its unfoldase partners is blocked by the competitive binding of acyldepsipeptide antibiotics (ADEPs) to the interfaces of the ClpP2 subunits. The resulting inhibition of Clp protease activity is lethal to Mtb. Here, we report the surprising discovery that a fragment of the ADEPs retains anti-Mtb activity yet stimulates rather than inhibits the ClpXP1P2-catalyzed degradation of proteins. Our data further suggest that the fragment stabilizes the ClpXP1P2 complex and binds ClpP1P2 in a fashion distinct from that of the intact ADEPs. A structure-activity relationship study of the bioactive fragment defines the pharmacophore and points the way toward the development of new drug leads for the treatment of tuberculosis.


Assuntos
Antibacterianos , Mycobacterium tuberculosis , Tuberculose , Humanos , Trifosfato de Adenosina/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Proteínas de Bactérias/metabolismo , Endopeptidase Clp/química , Chaperonas Moleculares/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/metabolismo , Peptídeo Hidrolases/efeitos dos fármacos , Peptídeo Hidrolases/metabolismo , Tuberculose/tratamento farmacológico
12.
mBio ; 14(4): e0047923, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37326546

RESUMO

Each year, fungi cause more than 1.5 billion infections worldwide and have a devastating impact on human health, particularly in immunocompromised individuals or patients in intensive care units. The limited antifungal arsenal and emerging multidrug-resistant species necessitate the development of new therapies. One strategy for combating drug-resistant pathogens is the administration of molecules that restore fungal susceptibility to approved drugs. Accordingly, we carried out a screen to identify small molecules that could restore the susceptibility of pathogenic Candida species to azole antifungals. This screening effort led to the discovery of novel 1,4-benzodiazepines that restore fluconazole susceptibility in resistant isolates of Candida albicans, as evidenced by 100-1,000-fold potentiation of fluconazole activity. This potentiation effect was also observed in azole-tolerant strains of C. albicans and in other pathogenic Candida species. The 1,4-benzodiazepines selectively potentiated different azoles, but not other approved antifungals. A remarkable feature of the potentiation was that the combination of the compounds with fluconazole was fungicidal, whereas fluconazole alone is fungistatic. Interestingly, the potentiators were not toxic to C. albicans in the absence of fluconazole, but inhibited virulence-associated filamentation of the fungus. We found that the combination of the potentiators and fluconazole significantly enhanced host survival in a Galleria mellonella model of systemic fungal infection. Taken together, these observations validate a strategy wherein small molecules can restore the activity of highly used anti-infectives that have lost potency. IMPORTANCE In the last decade, we have been witnessing a higher incidence of fungal infections, due to an expansion of the fungal species capable of causing disease (e.g., Candida auris), as well as increased antifungal drug resistance. Among human fungal pathogens, Candida species are a leading cause of invasive infections and are associated with high mortality rates. Infections by these pathogens are commonly treated with azole antifungals, yet the expansion of drug-resistant isolates has reduced their clinical utility. In this work, we describe the discovery and characterization of small molecules that potentiate fluconazole and restore the susceptibility of azole-resistant and azole-tolerant Candida isolates. Interestingly, the potentiating 1,4-benzodiazepines were not toxic to fungal cells but inhibited their virulence-associated filamentous growth. Furthermore, combinations of the potentiators and fluconazole decreased fungal burdens and enhanced host survival in a Galleria mellonella model of systemic fungal infections. Accordingly, we propose the use of novel antifungal potentiators as a powerful strategy for addressing the growing resistance of fungi to clinically approved drugs.


Assuntos
Antifúngicos , Micoses , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida , Fluconazol/farmacologia , Fluconazol/uso terapêutico , Azóis/farmacologia , Preparações Farmacêuticas , Testes de Sensibilidade Microbiana , Candida albicans , Micoses/tratamento farmacológico , Farmacorresistência Fúngica , Benzodiazepinas/farmacologia , Benzodiazepinas/uso terapêutico
13.
J Bacteriol ; 194(9): 2396-7, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22493203

RESUMO

We announce the availability of a high-quality draft of the genome sequence of Amycolatopsis sp. strain 39116, one of few bacterial species that are known to consume the lignin component of plant biomass. This genome sequence will further ongoing efforts to use microorganisms for the conversion of plant biomass into fuels and high-value chemicals.


Assuntos
Actinobacteria/classificação , Actinobacteria/genética , Biomassa , Genoma Bacteriano , Plantas , Actinobacteria/metabolismo , Biodegradação Ambiental , Cromossomos Bacterianos , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Dados de Sequência Molecular
14.
Chembiochem ; 13(7): 987-91, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22505051

RESUMO

We demonstrate that the Ugi reaction enables chemoselective derivatization of biological amines, carboxylic acids, aldehydes, or ketones with a chromophore under one set of reaction conditions, even in the presence of water. Derivatization of neurotransmitters, hormones, disease biomarkers and other metabolites bodes well for systems biology and diagnostic medicine.


Assuntos
Aminoácidos/metabolismo , Biomarcadores/química , Cianetos/metabolismo , Metabolômica/métodos , Aminoácidos/química , Cianetos/química
15.
Org Biomol Chem ; 10(8): 1517-20, 2012 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-22246070

RESUMO

We report a concise synthesis of A-factor, the prototypical γ-butyrolactone signalling compound of Streptomyces bacteria. In analogy to enzymatic reactions in A-factor biosynthesis, our synthesis features a tandem esterification-Knoevenagel condensation yielding a 2-acyl butenolide and a surprising, chemoselective conjugate reduction of this α,ß-unsaturated carbonyl compound using sodium cyanoborohydride.


Assuntos
4-Butirolactona/química , Streptomyces griseus/química , 4-Butirolactona/biossíntese , Estrutura Molecular , Streptomyces griseus/metabolismo
16.
J Org Chem ; 76(24): 10279-85, 2011 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-22044401

RESUMO

Isocyanoacetates are uniquely reactive compounds characterized by an ambivalent isocyano functional group and an enolizable α-carbon. It is widely believed that chiral α-substituted isocyanoacetates are configurationally unstable in some synthetically useful isocyanide-based multicomponent reactions. Herein, we demonstrate that chiral isocyanoacetates can be used with minimal to negligible epimerization in a variety of canonical Ugi four-component condensations as well as Joullié-Ugi three-component condensations, reactions that are particularly useful for constructing complex peptide structures in a single synthetic operation.

17.
Bioorg Med Chem ; 19(24): 7679-89, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22055717

RESUMO

Inhibitors of drug efflux pumps have great potential as pharmacological agents that restore the drug susceptibility of multidrug resistant bacterial pathogens. Most attention has been focused on the discovery of small molecules that inhibit the resistance nodulation division (RND) family drug efflux pumps in Gram-negative bacteria. The prototypical inhibitor of RND-family efflux pumps in Gram-negative bacteria is MC-207,110 (Phe-Arg-ß-naphthylamide), a C-capped dipeptide. Here, we report that C-capped dipeptides inhibit two chloramphenicol-specific efflux pumps in Streptomyces coelicolor, a Gram-positive bacterium that is a relative of the human pathogen Mycobacterium tuberculosis. Diversity-oriented synthesis of a library of structurally related C-capped dipeptides via an Ugi four component reaction and screening of the resulting compounds resulted in the discovery of a compound that is threefold more potent as a suppressor of chloramphenicol resistance in S. coelicolor than MC-207,110. Since chloramphenicol resistance in S. coelicolor is mediated by major facilitator superfamily drug efflux pumps, our findings provide the first evidence that C-capped dipeptides can inhibit drug efflux pumps outside of the RND superfamily.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Cloranfenicol/farmacologia , Dipeptídeos/química , Dipeptídeos/farmacologia , Proteínas de Membrana Transportadoras/metabolismo , Streptomyces coelicolor/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Humanos , Streptomyces coelicolor/metabolismo , Relação Estrutura-Atividade
18.
Front Cell Infect Microbiol ; 11: 702676, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34490142

RESUMO

Clinical manifestations of leishmaniasis range from self-healing, cutaneous lesions to fatal infections of the viscera. With no preventative Leishmania vaccine available, the frontline option against leishmaniasis is chemotherapy. Unfortunately, currently available anti-Leishmania drugs face several obstacles, including toxicity that limits dosing and emergent drug resistant strains in endemic regions. It is, therefore, imperative that more effective drug formulations with decreased toxicity profiles are developed. Previous studies had shown that 2-(((5-Methyl-2-thienyl)methylene)amino)-N-phenylbenzamide (also called Retro-2) has efficacy against Leishmania infections. Structure-activity relationship (SAR) analogs of Retro-2, using the dihydroquinazolinone (DHQZ) base structure, were subsequently described that are more efficacious than Retro-2. However, considering the hydrophobic nature of these compounds that limits their solubility and uptake, the current studies were initiated to determine whether the solubility of Retro-2 and its SAR analogs could be enhanced through encapsulation in amphiphilic polymer nanoparticles. We evaluated encapsulation of these compounds in the amphiphilic, thermoresponsive oligo(ethylene glycol) methacrylate-co-pentafluorostyrene (PFG30) copolymer that forms nanoparticle aggregates upon heating past temperatures of 30°C. The hydrophobic tracer, coumarin 6, was used to evaluate uptake of a hydrophobic molecule into PFG30 aggregates. Mass spectrometry analysis showed considerably greater delivery of encapsulated DHQZ analogs into infected cells and more rapid shrinkage of L. amazonensis communal vacuoles. Moreover, encapsulation in PFG30 augmented the efficacy of Retro-2 and its SAR analogs to clear both L. amazonensis and L. donovani infections. These studies demonstrate that encapsulation of compounds in PFG30 is a viable approach to dramatically increase bioavailability and efficacy of anti-Leishmania compounds.


Assuntos
Leishmania , Leishmaniose , Animais , Disponibilidade Biológica , Leishmaniose/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Polímeros
19.
J Bacteriol ; 192(14): 3565-73, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20453096

RESUMO

cis-Acting RNA elements in the leaders of bacterial mRNA often regulate gene transcription, especially in the context of amino acid metabolism. We determined that the transcription of the auxiliary, antibiotic-resistant tryptophanyl-tRNA synthetase gene (trpRS1) in Streptomyces coelicolor is regulated by a ribosome-mediated attenuator in the 5' leader of its mRNA region. This regulatory element controls gene transcription in response to the physiological effects of indolmycin and chuangxinmycin, two antibiotics that inhibit bacterial tryptophanyl-tRNA synthetases. By mining streptomycete genome sequences, we found several orthologs of trpRS1 that share this regulatory element; we predict that they are regulated in a similar fashion. The validity of this prediction was established through the analysis of a trpRS1 ortholog (SAV4725) in Streptomyces avermitilis. We conclude that the trpRS1 locus is a widely distributed and self-regulating antibiotic resistance cassette. This study provides insights into how auxiliary aminoacyl-tRNA synthetase genes are regulated in bacteria.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Ribossomos/fisiologia , Streptomyces/metabolismo , Transcrição Gênica/fisiologia , Triptofano-tRNA Ligase/metabolismo , Sequência de Bases , Deleção de Genes , Regulação Bacteriana da Expressão Gênica/fisiologia , Dados de Sequência Molecular , Mutagênese , Mutação de Sentido Incorreto , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Streptomyces/genética , Triptofano-tRNA Ligase/genética
20.
Org Biomol Chem ; 8(20): 4753-6, 2010 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-20714659

RESUMO

We report that catalytic quantities of the Lewis acidic metal catalysts scandium triflate and bismuth triflate promote conversion of oleic, linoleic, palmitic and myristic acids and their glyceryl triesters to the corresponding methyl esters (biodiesel) in greater than 90% yield upon microwave heating. Additionally, both catalysts could be recovered and reused in esterification reactions at least six times.


Assuntos
Biocombustíveis , Ácidos Graxos/química , Mesilatos/química , Micro-Ondas , Escândio/química , Triglicerídeos/química , Catálise , Esterificação , Ácidos de Lewis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA