Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
BMC Cancer ; 19(1): 972, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31638934

RESUMO

BACKGROUND: Castrate Resistant Prostate Cancer (CRPC) is an advanced disease resistant to systemic traditional medical or surgical castration, and resistance is primarily attributed to reactivation of AR through multiple mechanisms. TMPRSS2-ERG fusions have been shown to regulate AR signaling, interfere with pro-differentiation functions, and mediate oncogenic signaling. We have recently shown that ERG regulates intra-tumoral androgen synthesis and thereby facilitates AR function in prostate cancer cells. We hypothesize that enzalutamide treatment will be more effective in cells/tumors with TMPRSS2-ERG translocations because these tumors have increased AR signaling. METHODS: ERG knockdown was performed with VCaP cells using lentiviral infections to generate VCaP ERGshRNA cells and control VCaP scr cells with scrambled shRNA. Cell-growth analysis was performed to determine the effect of enzalutamide. Reverse transcription, quantitative real-time PCR (RT-qPCR) was used to determine the expression of AR responsive genes. Luciferase tagged VCaP scr and shRNA infected cells were used in an intra-tibial animal model for bone tumor growth analysis and enzalutamide treatment used to inhibit AR signaling in bone tumors. Western blotting analyzed VCaP bone tumor samples for ERG, AR, AKR1C3 and HSD3B1 and HSD3B2 expression. RESULTS: Enzalutamide inhibited the growth of VCaP scr cells more effectively than shERG cells. Analysis of AR responsive genes shows that Enzalutamide treatment at 5 micromolar concentration inhibited by 85-90% in VCaP Scr cells whereas these genes were inhibited to a lesser extent in VCaP shERG cells. Enzalutamide treatment resulted in severe growth inhibition in VCaP scr shRNA cells compared to VCaP shERG cells. In bone tumor growth experiment, VCaP ERG shRNA cells grew at slower than VCaP scr shRNA cells. Androgen biosynthetic enzyme expression is lower VCaP shERG bone tumors compared to VCaP scr shRNA bone tumors and enzalutamide inhibited the enzyme expression in both types of tumors. CONCLUSIONS: These data suggest that ERG transcription factor regulates androgen biosynthetic enzyme expression that enzalutamide treatment is more effective against VCaP bone tumors with an intact ERG expression, and that knocking down ERG in VCaP cells leads to a lesser response to enzalutamide therapy. Thus, ERG expression status in tumors could help stratify patients for enzalutamide therapy.


Assuntos
Antagonistas de Receptores de Andrógenos , Neoplasias Ósseas , Proteínas de Fusão Oncogênica , Feniltioidantoína , Serina Endopeptidases , Animais , Humanos , Masculino , Camundongos , Antagonistas de Receptores de Andrógenos/uso terapêutico , Benzamidas , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/secundário , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Resistencia a Medicamentos Antineoplásicos/genética , Técnicas de Silenciamento de Genes , Camundongos SCID , Nitrilas , Proteínas de Fusão Oncogênica/genética , Feniltioidantoína/análogos & derivados , Feniltioidantoína/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulador Transcricional ERG/genética , Regulador Transcricional ERG/metabolismo , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Mol Cancer ; 15(1): 68, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27809841

RESUMO

BACKGROUND: The CXCL12/CXCR4 axis transactivates HER2 and promotes intraosseous tumor growth. To further explore the transactivation of HER2 by CXCL12, we investigated the role of small GTP protein Gαi2 in Src and HER2 phosphorylation in lipid raft membrane microdomains and the significance of CXCR4 in prostate cancer bone tumor growth. METHODS: We used a variety of methods such as lipid raft isolation, invasion assays, an in vivo model of intratibial tumor growth, bone histomorphometry, and immunohistochemistry to determine the role of CXCR4 signaling in lipid raft membrane microdomains and effects of targeting of CXCR4 for bone tumor growth. RESULTS: We determined that (a) CXCL12/CXCR4 transactivation of EGFR and HER2 is confined to lipid raft membrane microdomains, (b) CXCL12 activation of HER2 and Src is mediated by small GTP proteins in lipid rafts, (c) inhibition of the CXCL12/CXCR4 axis through plerixafor abrogates the initial establishment of tumor growth without affecting the growth of established bone tumors, and (d) inhibition of EGFR signaling through gefitinib leads to inhibition of established bone tumor growth. CONCLUSIONS: These data suggest that lipid raft membrane microdomains are key sites for CXCL12/CXCR4 transactivation of HER2 via small GTP binding protein Gαi2 and Src kinase. The initial establishment of prostate cancer is supported by the endosteal niche, and blocking the CXCL12/CXCR4 axis of this niche along with its downstream signaling severely compromises initial establishment of tumors in the bone microenvironment, whereas expanding bone tumors are sensitive only to the members of growth factor receptor inhibition.


Assuntos
Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Quimiocina CXCL12/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Receptores CXCR4/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Benzilaminas , Neoplasias Ósseas/tratamento farmacológico , Linhagem Celular Tumoral , Ciclamos , Modelos Animais de Doenças , Receptores ErbB/agonistas , Receptores ErbB/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Compostos Heterocíclicos/farmacologia , Humanos , Masculino , Microdomínios da Membrana/metabolismo , Camundongos , Fosforilação , Neoplasias da Próstata/tratamento farmacológico , Receptor ErbB-2/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases da Família src/metabolismo
3.
Oncotarget ; 12(3): 185-198, 2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33613846

RESUMO

Hepatocellular carcinoma (HCC) is the most common primary liver tumor worldwide. Current medical therapy for HCC has limited efficacy. The present study tests the hypothesis that human cerebral endothelial cell-derived exosomes carrying elevated miR-214 (hCEC-Exo-214) can amplify the efficacy of anti-cancer drugs on HCC cells. Treatment of HepG2 and Hep3B cells with hCEC-Exo-214 in combination with anti-cancer agents, oxaliplatin or sorafenib, significantly reduced cancer cell viability and invasion compared with monotherapy with either drug. Additionally, the therapeutic effect of the combination therapy was detected in primary tumor cells derived from patients with HCC. The ability of hCEC-Exo-214 in sensitizing HCC cells to anti-cancer drugs was specific, in that combination therapy did not affect the viability and invasion of human liver epithelial cells and non-cancer primary cells. Furthermore, compared to monotherapy with oxaliplatin and sorafenib, hCEC-Exo-214 in combination with either drug substantially reduced protein levels of P-glycoprotein (P-gp) and splicing factor 3B subunit 3 (SF3B3) in HCC cells. P-gp and SF3B3 are among miR-214 target genes and are known to mediate drug resistance and cancer cell proliferation, respectively. In conclusion, the present in vitro study provides evidence that hCEC-Exo-214 significantly enhances the anti-tumor efficacy of oxaliplatin and sorafenib on HCC cells.

4.
JAMA Netw Open ; 4(1): e2034633, 2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33496795

RESUMO

Importance: Black patients have been underrepresented in prospective clinical trials of advanced prostate cancer. This study evaluated the efficacy of enzalutamide compared with bicalutamide, with planned subset analysis of Black patients with metastatic hormone-sensitive prostate cancer (mHSPC), which is a disease state responsive to androgen deprivation therapy (ADT). Objective: To compare the efficacy of enzalutamide vs bicalutamide in combination with ADT in men with mHSPC, with a subset analysis of Black patients. Design, Setting, and Participants: In this randomized clinical trial, a phase 2 screening design enabled a nondefinitive comparison of the primary outcome by treatment. Patients were stratified by race (Black or other) and bone pain (present or absent). Accrual of at least 30% Black patients was required. This multicenter trial was conducted at 4 centers in the US. Men with mHSPC with no history of seizures and adequate marrow, renal, and liver function were eligible. Data analysis was performed from February 2019 to March 2020. Interventions: Participants were randomized 1:1 to receive oral enzalutamide (160 mg daily) or bicalutamide (50 mg daily) in addition to ADT. Main Outcomes and Measures: The primary end point was the 7-month prostate-specific antigen (PSA) response (SMPR) rate, a previously accepted surrogate for overall survival (OS) outcome. Secondary end points included adverse reactions, time to PSA progression, and OS. Results: A total of 71 men (median [range] age, 65 [51-86] years) were enrolled; 29 (41%) were Black, 41 (58%) were White, and 1 (1%) was Asian. Thirty-six patients were randomized to receive enzalutamide, and 35 were randomized to receive bicalutamide. Twenty-six patients (37%) had bone pain and 37 patients (52%) had extensive disease. SMPR was achieved in 30 of 32 patients (94%; 95% CI, 80%-98%) taking enzalutamide and 17 of 26 patients (65%; 95% CI, 46%-81%) taking bicalutamide (P = .008) (difference, 29%; 95% CI, 5%-50%). Among Black patients, the SMPR was 93% (95% CI, 69%-99%) among those taking enzalutamide and 42% (95% CI, 19%-68%) among those taking bicalutamide (P = .009); among non-Black patients, the SMPR was 94% (95% CI, 74%-99%) among those taking enzalutamide and 86% (95% CI, 60%-96%) among those taking bicalutamide. The 12-month PSA response rates were 84% with enzalutamide and 34% with bicalutamide. Conclusions and Relevance: The findings of this randomized clinical trial comparing enzalutamide with bicalutamide suggest that enzalutamide is associated with improved outcomes compared with bicalutamide, in terms of the rate and duration of PSA response, in Black patients with mHSPC. Trial Registration: ClinicalTrials.gov Identifier: NCT02058706.


Assuntos
Antagonistas de Androgênios/uso terapêutico , Anilidas/uso terapêutico , Antineoplásicos/uso terapêutico , Negro ou Afro-Americano , Nitrilas/uso terapêutico , Feniltioidantoína/análogos & derivados , Neoplasias da Próstata/tratamento farmacológico , Compostos de Tosil/uso terapêutico , Idoso , Idoso de 80 Anos ou mais , Benzamidas , Biomarcadores Tumorais/sangue , Quimioterapia Combinada , Humanos , Masculino , Pessoa de Meia-Idade , Feniltioidantoína/uso terapêutico , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/etnologia , Resultado do Tratamento
5.
Oncogene ; 38(3): 332-344, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30111818

RESUMO

Chemokine signaling regulates cell migration and tumor metastasis. CXCL12, a member of the chemokine family, and its receptor, CXCR4, a G protein coupled receptor (GPCR), are key mediators of prostate-cancer (PC) bone metastasis. In PC cells androgens activate CXCR4 gene expression and receptor signaling on lipid rafts, which induces protease expression and cancer cell invasion. To identify novel lipid-raft-associated CXCR4 regulators supporting invasion/metastasis, we performed a SILAC-based quantitative proteomic analysis of lipid-rafts derived from PC3 stable cell lines with overexpression or knockdown of CXCR4. This analysis identified the evolutionarily conserved phosphatidylinositol 4-kinase IIIα (PI4KIIIα), and SAC1 phosphatase that dephosphorylates phosphatidylinositol-4-phosphate as potential candidate CXCR4 regulators. CXCR4 interacted with PI4KIIIα membrane targeting machinery recruiting them to the plasma membrane for PI4P production. Consistent with this interaction, PI4KIIIα was found tightly linked to the CXCR4 induced PC cell invasion. Thus, ablation of PI4KIIIα in CXCR4-expressing PC3 cells reduced cellular invasion in response to a variety of chemokines. Immunofluorescence microscopy in CXCR4-expressing cells revealed localized production of PI4P on the invasive projections. Human tumor studies documented increased PI4KIIIα expression in metastatic tumors vs. the primary tumor counterparts, further supporting the PI4KIIIα role in tumor metastasis. Furthermore, we also identified an unexpected function of PI4KIIIα in GPCR signaling where CXCR4 regulates PI4KIIIα activity and mediate tumor metastasis. Altogether, our study identifies a novel cross-talk between PI4KIIIα and CXCR4 in promoting tumor metastasis and suggests that PI4KIIIα pharmacological targeting may have therapeutic benefit for advanced prostate cancer patients.


Assuntos
1-Fosfatidilinositol 4-Quinase/fisiologia , Proteínas de Membrana/fisiologia , Invasividade Neoplásica/patologia , Metástase Neoplásica/fisiopatologia , Proteínas de Neoplasias/fisiologia , Neoplasias da Próstata/metabolismo , Receptores CXCR4/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Divisão Celular , Linhagem Celular Tumoral , Quimiocinas/farmacologia , Humanos , Masculino , Microdomínios da Membrana/metabolismo , Proteínas de Membrana/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Neoplasias da Próstata/patologia , Mapeamento de Interação de Proteínas , Transporte Proteico , Proteínas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Receptores CXCR4/antagonistas & inibidores , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Recombinantes de Fusão/metabolismo
6.
Clin Cancer Res ; 21(11): 2569-79, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25754347

RESUMO

PURPOSE: Intratumoral androgen synthesis in prostate cancer contributes to the development of castration-resistant prostate cancer (CRPC). Several enzymes responsible for androgen biosynthesis have been shown to be overexpressed in CRPC, thus contributing to CRPC in a castrated environment. The TMPRSS2-ERG transcription factor has been shown to be present in primary prostate cancer tumors as well as CRPC tumors. We hypothesize that TMPRSS2-ERG fusions regulate androgen biosynthetic enzyme (ABE) gene expression and the production of androgens, which contributes to the development of CRPC. EXPERIMENTAL DESIGN: We used a panel of assays, including lentivirus transduction, gene expression, chromatin immunoprecipitation and sequencing, liquid chromatography-mass spectrometric quantitation, immunocytochemistry, immunohistochemistry, and bioinformatics analysis of gene microarray databases, to determine ERG regulation of androgen synthesis. RESULTS: We found that ERG regulated the expression of the ABE AKR1C3 in prostate cancer cells via direct binding to the AKR1C3 gene. Knockdown of ERG resulted in reduced AKR1C3 expression, which caused a reduction in both DHT synthesis and PSA expression in VCaP prostate cancer cells treated with 5α-androstanedione (5α-Adione), a DHT precursor metabolite. Immunohistochemical staining revealed that ERG was coexpressed with AKR1C3 in prostate cancer tissue samples. CONCLUSIONS: These data suggest that AKR1C3 catalyzes the biochemical reduction of 5α-Adione to DHT in prostate cancer cells, and that ERG regulates this step through upregulation of AKR1C3 expression. Elucidation of ERG regulation of ABEs in CRPC may help to stratify TMPRSS2-ERG fusion-positive prostate cancer patients in the clinic for anti-androgen receptor-driven therapies; and AKR1C3 may serve as a valuable therapeutic target in the treatment of CRPC.


Assuntos
3-Hidroxiesteroide Desidrogenases/biossíntese , Hidroxiprostaglandina Desidrogenases/biossíntese , Neoplasias de Próstata Resistentes à Castração/genética , Serina Endopeptidases/genética , Transativadores/genética , 3-Hidroxiesteroide Desidrogenases/genética , Membro C3 da Família 1 de alfa-Ceto Redutase , Antagonistas de Androgênios/administração & dosagem , Androgênios/biossíntese , Androgênios/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Hidroxiprostaglandina Desidrogenases/genética , Masculino , Proteínas de Fusão Oncogênica/genética , Próstata/efeitos dos fármacos , Próstata/patologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Receptores Androgênicos/genética , Transdução de Sinais/efeitos dos fármacos , Transativadores/biossíntese , Regulador Transcricional ERG
7.
Mol Cancer Res ; 11(11): 1349-61, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23918819

RESUMO

UNLABELLED: CXCR4 is a chemokine receptor that mediates invasion and metastasis. CXCR4 expression is transcriptionally regulated in cancer cells and is associated with aggressive prostate cancer phenotypes. Previously, we and others have shown that the transcription factor ERG regulates CXCR4 expression in prostate cancer cells and that androgens modulate CXCR4 expression via increasing ERG expression. Herein, the molecular mechanisms of ERG-mediated CXCR4 promoter activation, phosphorylation of ERG by intracellular kinases and subsequent CXCR4 expression, as well as the status of ERG and CXCR4 in human prostate cancer specimens were investigated. Using multiple molecular strategies, it was demonstrated that (i) ERG expressed in TMPRSS2-ERG fusion positive VCaP cells selectively binds to specific ERG/Ets bindings sites in the CXCR4 promoter; (ii) distal binding sites mediate promoter activation; (iii) exogenously expressed ERG promotes CXCR4 expression; (iv) ERG is phosphorylated at Serine-81 and -215, by both IKK and Akt kinases, and Akt mediates CXCR4 expression; (v) ERG-induced CXCR4 drives CXCL12-dependent adhesion to fibronectin; and (vi) ERG and CXCR4 were coexpressed in human prostate cancer tissue, consistent with ERG-mediated transcriptional activation of CXCR4. These data demonstrate that ERG activates CXCR4 expression by binding to specific ERG/Ets responsive elements and via intracellular kinases that phosphorylate ERG at discrete serine residues. IMPLICATIONS: These findings provide a mechanistic link between TMPRSS2-ERG translocations and intracellular kinase-mediated phosphorylation of ERG on enhanced metastasis of tumor cells via CXCR4 expression and function in prostate cancer cells.


Assuntos
Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Neoplasias da Próstata/genética , Receptores CXCR4/metabolismo , Transativadores/metabolismo , Sítios de Ligação/genética , Adesão Celular/fisiologia , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Masculino , Invasividade Neoplásica , Fosforilação , Regiões Promotoras Genéticas , Neoplasias da Próstata/patologia , Receptores CXCR4/genética , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Transdução de Sinais/genética , Transativadores/genética , Regulador Transcricional ERG , Microambiente Tumoral
8.
Exp Cell Res ; 314(8): 1860-8, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18374917

RESUMO

We have shown that overexpression of SMS1, an enzyme that converts de novo ceramide into sphingomyelin, is accompanied by attenuated ceramide response and apoptotic resistance after photodamage with the photosensitizer Pc 4 (photodynamic therapy; PDT). To test whether SMS1 overexpression-related effects after PDT can be reversed, in this study SMS1 was downregulated in Jurkat T lymphoma/leukemia cells using small inhibitory RNA (siRNA) for SMS1. Compared to scrambled (control) siRNA-transfectants, in SMS1 siRNA-transfected cells the activity of SMS at rest was downregulated with concomitant decrease in sphingomyelin mass. In SMS1 siRNA-transfected cells increases in ceramides were higher than in control siRNA-transfectants after PDT. Similar findings were obtained for dihydroceramides suggesting the involvement of de novo ceramide pathway. PDT-induced DEVDase (caspase-3-like) activation was enhanced in SMS1 siRNA-transfected cells compared to their control counterparts. The data show that RNA interference-dependent downregulation of SMS1 is associated with increased accumulation of ceramide and dihydroceramide with concomitant sensitization of cells to apoptosis after photodamage. Similarly, in SMS2 siRNA-transfected cells, downregulation of SMS activity was accompanied by potentiated DEVDase activation post-photodamage. These findings suggest that SMS is a potential novel molecular target that can augment therapeutic efficacy of PDT.


Assuntos
Apoptose , Ceramidas/biossíntese , Indóis/toxicidade , Proteínas de Membrana/antagonistas & inibidores , Proteínas do Tecido Nervoso/antagonistas & inibidores , Fármacos Fotossensibilizantes/toxicidade , Interferência de RNA , Transferases (Outros Grupos de Fosfato Substituídos)/antagonistas & inibidores , Caspase 3/metabolismo , Ceramidas/química , Ceramidas/metabolismo , Humanos , Células Jurkat , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , RNA Interferente Pequeno/metabolismo , Espectrometria de Massas por Ionização por Electrospray , Esfingomielinas/química , Esfingomielinas/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA