Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Dokl Biol Sci ; 508(1): 81-84, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37186052

RESUMO

Representatives of pogonophorans (Annelida, Siboglinidae), whose vital activity is provided by symbiotic chemoautotrophic bacteria that oxidize methane and hydrogen sulfide, were found in the St. Anna Trough at depths of 539 and 437 m. The finding of pogonophorans suggests high concentrations of methane, which might result from dissociation of bottom gas hydrates under the influence of the influx of warm Atlantic water into the Kara Sea along the St. Anna Trough.


Assuntos
Anelídeos , Poliquetos , Animais , Metano , Água , Bactérias
2.
Nature ; 489(7414): 137-40, 2012 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-22932271

RESUMO

The future trajectory of greenhouse gas concentrations depends on interactions between climate and the biogeosphere. Thawing of Arctic permafrost could release significant amounts of carbon into the atmosphere in this century. Ancient Ice Complex deposits outcropping along the ~7,000-kilometre-long coastline of the East Siberian Arctic Shelf (ESAS), and associated shallow subsea permafrost, are two large pools of permafrost carbon, yet their vulnerabilities towards thawing and decomposition are largely unknown. Recent Arctic warming is stronger than has been predicted by several degrees, and is particularly pronounced over the coastal ESAS region. There is thus a pressing need to improve our understanding of the links between permafrost carbon and climate in this relatively inaccessible region. Here we show that extensive release of carbon from these Ice Complex deposits dominates (57 ± 2 per cent) the sedimentary carbon budget of the ESAS, the world's largest continental shelf, overwhelming the marine and topsoil terrestrial components. Inverse modelling of the dual-carbon isotope composition of organic carbon accumulating in ESAS surface sediments, using Monte Carlo simulations to account for uncertainties, suggests that 44 ± 10 teragrams of old carbon is activated annually from Ice Complex permafrost, an order of magnitude more than has been suggested by previous studies. We estimate that about two-thirds (66 ± 16 per cent) of this old carbon escapes to the atmosphere as carbon dioxide, with the remainder being re-buried in shelf sediments. Thermal collapse and erosion of these carbon-rich Pleistocene coastline and seafloor deposits may accelerate with Arctic amplification of climate warming.


Assuntos
Carbono/análise , Congelamento , Sedimentos Geológicos/química , Solo/química , Alcanos/análise , Regiões Árticas , Atmosfera/química , Bactérias/química , Biomassa , Dióxido de Carbono/análise , Geografia , Aquecimento Global/estatística & dados numéricos , Efeito Estufa/estatística & dados numéricos , Gelo/análise , Oceanos e Mares , Água do Mar/química , Sibéria
3.
Sci Rep ; 10(1): 13041, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32747694

RESUMO

The Kara and Laptev seas receive about one half of total freshwater runoff to the Arctic Ocean from the Ob, Yenisei, and Lena rivers. Discharges of these large rivers form freshened surface water masses over wide areas in these seas. These water masses, i.e., the Ob-Yenisei and Lena river plumes, generate an eastward buoyancy boundary current that accounts for the large-scale zonal freshwater transport along the Siberian part in the Arctic Ocean. In this study we investigate spreading of the Ob-Yenisei plume from the Kara Sea to the Laptev Sea through the Vilkitsky Strait and of the Lena plume from the Laptev Sea to the East-Siberian Sea through the Laptev and Sannikov straits during ice-free season. Large horizontal density gradient between freshened plume water and salty ambient sea water is the main driver of these processes, however, their intensity strongly depends on local wind forcing. The Ob-Yenisei plume is spreading to the Laptev Sea in a narrow alongshore current which is induced by strong and long-term southwesterly winds. Under other wind forcing the plume does not reach the Vilkitsky Strait. The Lena plume is almost constantly spreading to the East-Siberian Sea as a large-scale surface water mass which intensity is governed by eastward Ekman transport and is prone to large synoptic variability.

4.
Sci Rep ; 9(1): 19487, 2019 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-31862928

RESUMO

The Ob-Irtysh River system is the seventh-longest one in the world. Unlike the other Great Siberian rivers, it is only slightly impacted by the continuous permafrost in its low flow. Instead, it drains the Great Vasyugan mire, which is the world largest swamp, and receives huge load of the Irtysh waters which drain the populated lowlands of the East Siberian Plain. The central challenge of this paper is to understand the processes responsible for molecular transformations of natural organic matter (NOM) in the Ob-Irtysh river system along the South-North transect. For solving this task, the NOM was isolated from the water samples collected along the 3,000 km transect using solid-phase extraction. The NOM samples were further analyzed using high resolution mass spectrometry and optical spectroscopy. The obtained results have shown a distinct trend both in molecular composition and diversity of the NOM along the South-North transect: the largest diversity was observed in the Southern "swamp-wetland" stations. The samples were dominated with humic and lignin-like components, and enriched with aminosugars. After the Irtysh confluence, the molecular nature of NOM has changed drastically: it became much more oxidized and enriched with heterocyclic N-containing compounds. These molecular features are very different from the aliphatics-rich permafrost NOM. They witnesses much more conservative nature of the NOM discharged into the Arctic by the Ob-Irtysh river system. In general, drastic reduction in molecular diversity was observed in the northern stations located in the lower Ob flow.

5.
Sci Adv ; 5(2): eaau8052, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30788434

RESUMO

Black carbon (BC) contributes to Arctic climate warming, yet source attributions are inaccurate due to lacking observational constraints and uncertainties in emission inventories. Year-round, isotope-constrained observations reveal strong seasonal variations in BC sources with a consistent and synchronous pattern at all Arctic sites. These sources were dominated by emissions from fossil fuel combustion in the winter and by biomass burning in the summer. The annual mean source of BC to the circum-Arctic was 39 ± 10% from biomass burning. Comparison of transport-model predictions with the observations showed good agreement for BC concentrations, with larger discrepancies for (fossil/biomass burning) sources. The accuracy of simulated BC concentration, but not of origin, points to misallocations of emissions in the emission inventories. The consistency in seasonal source contributions of BC throughout the Arctic provides strong justification for targeted emission reductions to limit the impact of BC on climate warming in the Arctic and beyond.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA