RESUMO
Significant knowledge gaps exist regarding the responses of cells, tissues, and organs to organismal death. Examining the survival mechanisms influenced by metabolism and environment, this research has the potential to transform regenerative medicine, redefine legal death, and provide insights into life's physiological limits, paralleling inquiries in embryogenesis.
Assuntos
Morte , Humanos , AnimaisRESUMO
OBJECTIVE: An improved understanding of the role of the leptomeningeal collateral circulation in blood flow compensation following middle cerebral artery (MCA) occlusion can contribute to more effective treatment development for ischemic stroke. The present study introduces a model of the cerebral circulation to predict cerebral blood flow and tissue oxygenation following MCA occlusion. METHODS: The model incorporates flow regulation mechanisms based on changes in pressure, shear stress, and metabolic demand. Oxygen saturation in cerebral vessels and tissue is calculated using a Krogh cylinder model. The model is used to assess the effects of changes in oxygen demand and arterial pressure on cerebral blood flow and oxygenation after MCA occlusion. RESULTS: An increase from five to 11 leptomeningeal collateral vessels was shown to increase the oxygen saturation in the region distal to the occlusion by nearly 100%. Post-occlusion, the model also predicted a loss of autoregulation and a decrease in flow to the ischemic territory as oxygen demand was increased; these results were consistent with data from experiments that induced cerebral ischemia. CONCLUSIONS: This study highlights the importance of leptomeningeal collaterals following MCA occlusion and reinforces the idea that lower oxygen demand and higher arterial pressure improve conditions of flow and oxygenation.
Assuntos
Isquemia Encefálica , Hipertensão , Humanos , Infarto da Artéria Cerebral Média , Circulação Colateral/fisiologia , Circulação Cerebrovascular , Oxigênio , Artéria Cerebral MédiaRESUMO
Extracellular vesicles (EVs) are nanovesicles released by all eukaryotic cells. This work reports the first nanoscale fluorescent visualization of tumor-originating vesicles bearing an angiogenic microRNA (miR)-126 cargo. In a validated experimental model of lethal murine vascular neoplasm, tumor-originating EV delivered its miR-126 cargo to tumor-associated macrophages (TAMs). Such delivery resulted in an angiogenic (LYVE+) change of state in TAM that supported tumor formation. Study of the trafficking of tumor-originating fluorescently tagged EV revealed colocalization with TAM demonstrating uptake by these cells. Ex vivo treatment of macrophages with tumor-derived EVs led to gain of tumorigenicity in these isolated cells. Single-cell RNA sequencing of macrophages revealed that EV-borne miR-126 characterized the angiogenic change of state. Unique gene expression signatures of specific macrophage clusters responsive to miR-126-enriched tumor-derived EVs were revealed. Topical tissue nanotransfection (TNT) delivery of an oligonucleotide comprising an anti-miR against miR-126 resulted in significant knockdown of miR-126 in the tumor tissue. miR-126 knockdown resulted in complete involution of the tumor and improved survival rate of tumor-affected mice. This work identifies a novel tumorigenic mechanism that relies on tumorigenic state change of TAM caused by tumor-originating EV-borne angiomiR. This disease process can be effectively targeted by topical TNT of superficial tumors.
Assuntos
Vesículas Extracelulares , MicroRNAs , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Macrófagos/metabolismo , Fagocitose , Vesículas Extracelulares/metabolismoRESUMO
Fetal cutaneous wound closure and repair differ from that in adulthood. In this work, we identify an oxidant stress sensor protein, nonselenocysteine-containing phospholipid hydroperoxide glutathione peroxidase (NPGPx), that is abundantly expressed in normal fetal epidermis (and required for fetal wound closure), though not in adult epidermis, but is variably re-induced upon adult tissue wounding. NPGPx is a direct target of the miR-29 family. Following injury, abundance of miR-29 is lowered, permitting a prompt increase in NPGPx transcripts and protein expression in adult wound-edge tissue. NPGPx expression was required to mediate increased keratinocyte migration induced by miR-29 inhibition in vitro and in vivo. Increased NPGPx expression induced increased SOX2 expression and ß-catenin nuclear localization in keratinocytes. Augmenting physiologic NPGPx expression via experimentally induced miR-29 suppression, using cutaneous tissue nanotransfection or targeted lipid nanoparticle delivery of anti-sense oligonucleotides, proved to be sufficient to overcome the deleterious effects of diabetes on this specific pathway to enhance tissue repair.
Assuntos
MicroRNAs , Cicatrização , Gravidez , Humanos , Feminino , Cicatrização/genética , Pele/metabolismo , Queratinócitos/metabolismo , Movimento Celular , MicroRNAs/metabolismoRESUMO
OBJECTIVE: This work addressing complexities in wound infection, seeks to test the reliance of bacterial pathogen Pseudomonas aeruginosa (PA) on host skin lipids to form biofilm with pathological consequences. BACKGROUND: PA biofilm causes wound chronicity. Both CDC as well as NIH recognizes biofilm infection as a threat leading to wound chronicity. Chronic wounds on lower extremities often lead to surgical limb amputation. METHODS: An established preclinical porcine chronic wound biofilm model, infected with PA or Pseudomonas aeruginosa ceramidase mutant (PA ∆Cer ), was used. RESULTS: We observed that bacteria drew resource from host lipids to induce PA ceramidase expression by three orders of magnitude. PA utilized product of host ceramide catabolism to augment transcription of PA ceramidase. Biofilm formation was more robust in PA compared to PA ∆Cer . Downstream products of such metabolism such as sphingosine and sphingosine-1-phosphate were both directly implicated in the induction of ceramidase and inhibition of peroxisome proliferator-activated receptor (PPAR)δ, respectively. PA biofilm, in a ceram-idastin-sensitive manner, also silenced PPARδ via induction of miR-106b. Low PPARδ limited ABCA12 expression resulting in disruption of skin lipid homeostasis. Barrier function of the wound-site was thus compromised. CONCLUSIONS: This work demonstrates that microbial pathogens must co-opt host skin lipids to unleash biofilm pathogenicity. Anti-biofilm strategies must not necessarily always target the microbe and targeting host lipids at risk of infection could be productive. This work may be viewed as a first step, laying fundamental mechanistic groundwork, toward a paradigm change in biofilm management.
Assuntos
PPAR delta , Pseudomonas aeruginosa , Animais , Ceramidases , Extremidade Inferior , SuínosRESUMO
INTRODUCTION: Patients with sepsis exhibit significant, persistent immunologic dysfunction. Evidence supports the hypothesis that epigenetic regulation of key cytokines plays an important role in this dysfunction. In sepsis, circulating microvesicles (MVs) containing elevated levels of DNA methyltransferase (DNMT) mRNA cause gene methylation and silencing in recipient cells. We sought to examine the functional role of MV DNMT proteins in this immunologic dysfunction. METHODS: In total, 33 patients were enrolled within 24 h of sepsis diagnosis (23 sepsis, 10 critically ill controls). Blood and MVs were collected on days 1, 3, and 5 of sepsis, and protein was isolated from the MVs. Levels of DNMT protein and activity were quantified. MVs were produced in vitro by stimulating naïve monocytes with lipopolysaccharide. Methylation was assessed using bisulfate site-specific qualitative real-time polymerase chain reaction. RESULTS: The size of MVs in the patients with sepsis decreased from days 1 to 5 compared to the control group. Circulating MVs contained significantly higher levels of DNMT 1 and 3A, protein. We recapitulated the production of these DNMT-containing MVs in vitro by treating monocytes with lipopolysaccharide. We found that exposing naïve monocytes to these MVs resulted in increased promoter methylation of tumor necrosis factor alpha. CONCLUSIONS: An analysis of the isolated MVs revealed higher levels of DNMT proteins in septic patients than those in nonseptic patients. Exposing naïve monocytes to DNMT-containing MVs produced in vitro resulted in hypermethylation of tumor necrosis factor alpha, a key cytokine implicated in postsepsis immunosuppression. These results suggest that DNMT-containing MVs cause epigenetic changes in recipient cells. This study highlights a novel role for MVs in the immune dysfunction of patients with sepsis.
Assuntos
Epigênese Genética , Sepse , Humanos , Metiltransferases/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Lipopolissacarídeos , Terapia de Imunossupressão , Citocinas/metabolismo , DNARESUMO
BACKGROUND: Heart transplantation, a life-saving approach for patients with end-stage heart disease, is limited by shortage of donor organs. While prolonged storage provides more organs, it increases the extent of ischemia. Therefore, we seek to understand molecular mechanisms underlying pathophysiological changes of donor hearts during prolonged storage. Additionally, considering mesenchymal stromal cell (MSC)-derived paracrine protection, we aim to test if MSC secretome preserves myocardial transcriptome profile and whether MSC secretome from a certain source provides the optimal protection in donor hearts during cold storage. METHODS AND RESULTS: Isolated mouse hearts were divided into: no cold storage (control), 6 h cold storage (6 h-I), 6 h-I + conditioned media from bone marrow MSCs (BM-MSC CM), and 6 h-I + adipose-MSC CM (Ad-MSC CM). Deep RNA sequencing analysis revealed that compared to control, 6 h-I led to 266 differentially expressed genes, many of which were implicated in modulating mitochondrial performance, oxidative stress response, myocardial function, and apoptosis. BM-MSC CM and Ad-MSC CM restored these gene expression towards control. They also improved 6 h-I-induced myocardial functional depression, reduced inflammatory cytokine production, decreased apoptosis, and reduced myocardial H2O2. However, neither MSC-exosomes nor exosome-depleted CM recapitulated MSC CM-ameliorated apoptosis and CM-improved mitochondrial preservation during cold ischemia. Knockdown of Per2 by specific siRNA abolished MSC CM-mediated these protective effects in cardiomyocytes following 6 h cold storage. CONCLUSIONS: Our results demonstrated that using MSC secretome (BM-MSCs and Ad-MSCs) during prolonged cold storage confers preservation of the normal transcriptional "fingerprint", and reduces donor heart damage. MSC-released soluble factors and exosomes may synergistically act for donor heart protection.
Assuntos
Transplante de Coração , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Animais , Medula Óssea , Humanos , Peróxido de Hidrogênio/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Secretoma , Doadores de Tecidos , TranscriptomaRESUMO
Unresolved inflammation compromises diabetic wound healing. Recently, we reported that inadequate RNA packaging in murine wound-edge keratinocyte-originated exosomes (Exoκ) leads to persistent inflammation [Zhou, X. ACS Nano 2020, 14(10), 12732-12748]. Herein, we use charge detection mass spectrometry (CDMS) to analyze intact Exoκ isolated from a 5 day old wound-edge tissue of diabetic mice and a heterozygous nondiabetic littermate control group. In CDMS, the charge (z) and mass-to-charge ratio (m/z) of individual exosome particles are measured simultaneously, enabling the direct analysis of masses in the 1-200 MDa range anticipated for exosomes. These measurements reveal a broad mass range for Exoκ from â¼10 to >100 MDa. The m and z values for these exosomes appear to fall into families (subpopulations); a statistical modeling analysis partially resolves â¼10-20 Exoκ subpopulations. Complementary proteomics, immunofluorescence, and electron microscopy studies support the CDMS results that Exoκ from diabetic and nondiabetic mice vary substantially. Subpopulations having high z (>650) and high m (>44 MDa) are more abundant in nondiabetic animals. We propose that these high m and z particles may arise from differences in cargo packaging. The veracity of this idea is discussed in light of other recent CDMS results involving genome packaging in vaccines, as well as exosome imaging experiments. Characterization of intact exosome particles based on the physical properties of m and z provides a new means of investigating wound healing and suggests that CDMS may be useful for other pathologies.
Assuntos
Diabetes Mellitus Experimental , Exossomos , Animais , Diabetes Mellitus Experimental/patologia , Exossomos/patologia , Inflamação , Queratinócitos , Espectrometria de Massas , CamundongosRESUMO
Cardiac dysfunction/damage following trauma, shock, sepsis, and ischemia impacts clinical outcomes. Acute inflammation and oxidative stress triggered by these injuries impair mitochondria, which are critical to maintaining cardiac function. Despite sex dimorphisms in consequences of these injuries, it is unclear whether mitochondrial bioenergetic responses to inflammation/oxidative stress are sex-dependent. We hypothesized that sex disparity in mitochondrial bioenergetics following TNFα or H2O2 exposure is responsible for reported sex differences in cardiac damage/dysfunction. Methods and Results: Cardiomyocytes isolated from age-matched adult male and female mice were subjected to 1 h TNFα or H2O2 challenge, followed by detection of mitochondrial respiration capacity using the Seahorse XF96 Cell Mito Stress Test. Mitochondrial membrane potential (ΔΨm) was analyzed using JC-1 in TNFα-challenged cardiomyocytes. We found that cardiomyocytes isolated from female mice displayed a better mitochondrial bioenergetic response to TNFα or H2O2 than those isolated from male mice did. TNFα decreased ΔΨm in cardiomyocytes isolated from males but not from females. 17ß-estradiol (E2) treatment improved mitochondrial metabolic function in cardiomyocytes from male mice subjected to TNFα or H2O2 treatment. Conclusions: Cardiomyocyte mitochondria from female mice were more resistant to acute stress than those from males. The female sex hormone E2 treatment protected cardiac mitochondria against acute inflammatory and oxidative stress.
Assuntos
Metabolismo Energético , Mitocôndrias Cardíacas , Fatores Sexuais , Fator de Necrose Tumoral alfa , Animais , Feminino , Peróxido de Hidrogênio/metabolismo , Inflamação/metabolismo , Masculino , Camundongos , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Fator de Necrose Tumoral alfa/metabolismoRESUMO
The global prevalence of antibiotic-resistant bacteria has increased the risk of dangerous infections, requiring rapid diagnosis and treatment. The standard method for diagnosis of bacterial infections remains dependent on slow culture-based methods, carried out in central laboratories, not easily extensible to rapid identification of organisms, and thus not optimal for timely treatments at the point-of-care (POC). Here, we demonstrate rapid detection of bacteria by combining electrochemical immunoassays (EC-IA) for pathogen identification with confirmatory quantitative mass spectral immunoassays (MS-IA) based on signal ion emission reactive release amplification (SIERRA) nanoparticles with unique mass labels. This diagnostic method uses compatible reagents for all involved assays and standard fluidics for automatic sample preparation at POC. EC-IA, based on alkaline phosphatase-conjugated pathogen-specific antibodies, quantified down to 104 bacteria per sample when testing Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa lysates. EC-IA quantitation was also obtained for wound samples. The MS-IA using nanoparticles against S. aureus, E. coli, Klebsiella pneumoniae, and P. aeruginosa allowed selective quantitation of â¼105 bacteria per sample. This method preserves bacterial cells allowing extraction and amplification of 16S ribosomal RNA genes and antibiotic resistance genes, as was demonstrated through identification and quantitation of two strains of E. coli, resistant and nonresistant due to ß-lactamase cefotaximase genes. Finally, the combined immunoassays were compared against culture using remnant deidentified patient urine samples. The sensitivities for these immunoassays were 83, 95, and 92% for the prediction of S. aureus, P. aeruginosa, and E. coli or K. pneumoniae positive culture, respectively, while specificities were 85, 92, and 97%. The diagnostic platform presented here with fluidics and combined immunoassays allows for pathogen isolation within 5 min and identification in as little as 15 min to 1 h, to help guide the decision for additional testing, optimally only on positive samples, such as multiplexed or resistance gene assays (6 h).
Assuntos
Antibacterianos , Anti-Infecciosos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Escherichia coli/genética , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Humanos , Testes de Sensibilidade Microbiana , Staphylococcus aureus/genéticaRESUMO
OBJECTIVE: To incorporate chronic vascular adaptations into a mathematical model of the rat hindlimb to simulate flow restoration following total occlusion of the femoral artery. METHODS: A vascular wall mechanics model is used to simulate acute and chronic vascular adaptations in the collateral arteries and collateral-dependent arterioles of the rat hindlimb. On an acute timeframe, the vascular tone of collateral arteries and distal arterioles is determined by responses to pressure, shear stress, and metabolic demand. On a chronic timeframe, sustained dilation of arteries and arterioles induces outward vessel remodeling represented by increased passive vessel diameter (arteriogenesis), and low venous oxygen saturation levels induce the growth of new capillaries represented by increased capillary number (angiogenesis). RESULTS: The model predicts that flow compensation to an occlusion is enhanced primarily by arteriogenesis of the collateral arteries on a chronic time frame. Blood flow autoregulation is predicted to be disrupted and to occur for higher pressure values following femoral arterial occlusion. CONCLUSIONS: Structural adaptation of the vasculature allows for increased blood flow to the collateral-dependent region after occlusion. Although flow is still below pre-occlusion levels, model predictions indicate that interventions which enhance collateral arteriogenesis would have the greatest potential for restoring flow.
RESUMO
The purpose of this study was to characterize the effects of tocotrienol form of vitamin E (TCT) on platelet function in patients with stroke or transient ischemic attack (TIA). A double blind, randomized, single center phase II clinical trial was conducted comparing placebo (PBO) and 400 and 800 mg TCT daily for a year in 150 patients with a sentinel ischemic stroke or TIA event in the prior 6 months. Platelet function was measured at baseline and then, at 3 month intervals for a year, using light transmission aggregometry. The incidence of aspirin resistance in aspirin-treated patients or platelet inhibition in patients on clopidogrel alone was compared between the three treatment groups. Results showed that in patients taking aspirin and clopidogrel, the incidence of aspirin resistance was significantly decreased from 40% in PBO-treated patients to 9% in the 400 mg TCT group and 25% in the TCT 800 mg group (P = .03). In conclusion, patients on aspirin and clopidogrel had a higher incidence of aspirin resistance than all patients treated with aspirin alone and TCT decreased the frequency of aspirin resistance in this group.
Assuntos
Aspirina/uso terapêutico , Clopidogrel/uso terapêutico , Ataque Isquêmico Transitório/tratamento farmacológico , Acidente Vascular Cerebral/tratamento farmacológico , Tocotrienóis/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Relação Dose-Resposta a Droga , Método Duplo-Cego , Quimioterapia Combinada , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Avaliação de Resultados em Cuidados de Saúde , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/uso terapêutico , Tocotrienóis/administração & dosagem , Vitaminas/uso terapêuticoRESUMO
Bacterial biofilms efficiently evade immune defenses, greatly complicating the prognosis of chronic infections. How methicillin-resistant Staphylococcus aureus (MRSA) biofilms evade host immune defenses is largely unknown. This study describes some of the major mechanisms required for S. aureus biofilms to evade the innate immune response and provides evidence of key virulence factors required for survival and persistence of bacteria during chronic infections. Neutrophils are the most abundant white blood cells in circulation, playing crucial roles in the control and elimination of bacterial pathogens. Specifically, here we show that, unlike single-celled populations, S. aureus biofilms rapidly skew neutrophils toward neutrophil extracellular trap (NET) formation through the combined activity of leukocidins Panton-Valentine leukocidin and γ-hemolysin AB. By eliciting this response, S. aureus was able to persist, as the antimicrobial activity of released NETs was ineffective at clearing biofilm bacteria. Indeed, these studies suggest that NETs could inadvertently potentiate biofilm infections. Last, chronic infection in a porcine burn wound model clearly demonstrated that leukocidins are required for "NETosis" and facilitate bacterial survival in vivo.
Assuntos
Proteínas de Bactérias/imunologia , Biofilmes , Armadilhas Extracelulares/imunologia , Evasão da Resposta Imune , Leucocidinas/imunologia , Neutrófilos/imunologia , Infecções Cutâneas Estafilocócicas/imunologia , Staphylococcus aureus/fisiologia , Infecção dos Ferimentos/imunologia , Animais , Armadilhas Extracelulares/microbiologia , Humanos , Infecções Cutâneas Estafilocócicas/patologia , Suínos , Infecção dos Ferimentos/microbiologia , Infecção dos Ferimentos/patologiaRESUMO
OBJECTIVE: The objective of this work was to causatively link biofilm properties of bacterial infection to specific pathogenic mechanisms in wound healing. BACKGROUND: Staphylococcus aureus is one of the four most prevalent bacterial species identified in chronic wounds. Causatively linking wound pathology to biofilm properties of bacterial infection is challenging. Thus, isogenic mutant stains of S. aureus with varying degree of biofilm formation ability was studied in an established preclinical porcine model of wound biofilm infection. METHODS: Isogenic mutant strains of S. aureus with varying degree (ΔrexBâ>âUSA300â>âΔsarA) of biofilm-forming ability were used to infect full-thickness porcine cutaneous wounds. RESULTS: Compared with that of ΔsarA infection, wound biofilm burden was significantly higher in response to ΔrexB or USA300 infection. Biofilm infection caused degradation of cutaneous collagen, specifically collagen 1 (Col1), with ΔrexB being most pathogenic in that regard. Biofilm infection of the wound repressed wound-edge miR-143 causing upregulation of its downstream target gene matrix metalloproteinase-2. Pathogenic rise of collagenolytic matrix metalloproteinase-2 in biofilm-infected wound-edge tissue sharply decreased collagen 1/collagen 3 ratio compromising the biomechanical properties of the repaired skin. Tensile strength of the biofilm infected skin was compromised supporting the notion that healed wounds with a history of biofilm infection are likely to recur. CONCLUSION: This study provides maiden evidence that chronic S. aureus biofilm infection in wounds results in impaired granulation tissue collagen leading to compromised wound tissue biomechanics. Clinically, such compromise in tissue repair is likely to increase wound recidivism.
Assuntos
Biofilmes , Colágeno/metabolismo , Tecido de Granulação/metabolismo , Staphylococcus aureus/isolamento & purificação , Cicatrização/fisiologia , Infecção dos Ferimentos/microbiologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Tecido de Granulação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infecções Estafilocócicas/microbiologia , Suínos , Infecção dos Ferimentos/diagnósticoRESUMO
Pseudomonas aeruginosa causes devastating infections in immunocompromised individuals. Once established, P. aeruginosa infections become incredibly difficult to treat due to the development of antibiotic tolerant, aggregated communities known as biofilms. A hyper-biofilm forming clinical variant of P. aeruginosa, known as a rugose small-colony variant (RSCV), is frequently isolated from chronic infections and is correlated with poor clinical outcome. The development of these mutants during infection suggests a selective advantage for this phenotype, but it remains unclear how this phenotype promotes persistence. While prior studies suggest RSCVs could survive by evading the host immune response, our study reveals infection with the RSCV, PAO1ΔwspF, stimulated an extensive inflammatory response that caused significant damage to the surrounding host tissue. In both a chronic wound model and acute pulmonary model of infection, we observed increased bacterial burden, host tissue damage, and a robust neutrophil response during RSCV infection. Given the essential role of neutrophils in P. aeruginosa-mediated disease, we investigated the impact of the RSCV phenotype on neutrophil function. The RSCV phenotype promoted phagocytic evasion and stimulated neutrophil reactive oxygen species (ROS) production. We also demonstrate that bacterial aggregation and TLR-mediated pro-inflammatory cytokine production contribute to the immune response to RSCVs. Additionally, RSCVs exhibited enhanced tolerance to neutrophil-produced antimicrobials including H2O2 and the antimicrobial peptide LL-37. Collectively, these data indicate RSCVs elicit a robust but ineffective neutrophil response that causes significant host tissue damage. This study provides new insight on RSCV persistence, and indicates this variant may have a critical role in the recurring tissue damage often associated with chronic infections.
Assuntos
Interações Hospedeiro-Patógeno , Neutrófilos/imunologia , Pneumonia Bacteriana/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Animais , Aderência Bacteriana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Células Cultivadas , Citocinas/metabolismo , Feminino , Variação Genética , Humanos , Camundongos Endogâmicos BALB C , Viabilidade Microbiana , Microscopia Confocal , Mutação , Neutrófilos/metabolismo , Neutrófilos/microbiologia , Neutrófilos/patologia , Fagocitose , Pneumonia Bacteriana/metabolismo , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/patologia , Infecções por Pseudomonas/metabolismo , Infecções por Pseudomonas/microbiologia , Infecções por Pseudomonas/patologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Explosão Respiratória , Sus scrofa , CicatrizaçãoRESUMO
Decellularized matrices of biologic tissue have performed well as wound care dressings. Extracellular matrix-based dressings are subject to rapid degradation by excessive protease activity at the wound environment. Stabilized, acellular, equine pericardial collagen matrix (sPCM) wound care dressing is flexible cross-linked proteolytic enzyme degradation resistant. sPCM was structurally characterized utilizing scanning electron and atomic force microscopy. In murine excisional wounds, sPCM was effective in mounting an acute inflammatory response. Postwound inflammation resolved rapidly, as indicated by elevated levels of IL-10, arginase-1, and VEGF, and lowering of IL-1ß and TNF-α. sPCM induced antimicrobial proteins S100A9 and ß-defensin-1 in keratinocytes. Adherence of Pseudomonas aeruginosa and Staphylococcus aureus on sPCM pre-exposed to host immune cells in vivo was inhibited. Excisional wounds dressed with sPCM showed complete closure at d 14, while control wounds remained open. sPCM accelerated wound re-epithelialization. sPCM not only accelerated wound closure but also improved the quality of healing by increased collagen deposition and maturation. Thus, sPCM is capable of presenting scaffold functionality during the course of wound healing. In addition to inducing endogenous antimicrobial defense systems, the dressing itself has properties that minimize biofilm formation. It mounts robust inflammation, a process that rapidly resolves, making way for wound healing to advance.-El Masry, M. S., Chaffee, S., Das Ghatak, P., Mathew-Steiner, S. S., Das, A., Higuita-Castro, N., Roy, S., Anani, R. A., Sen, C. K. Stabilized collagen matrix dressing improves wound macrophage function and epithelialization.
Assuntos
Bandagens , Colágeno/farmacologia , Matriz Extracelular/metabolismo , Inflamação/prevenção & controle , Queratinócitos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Reepitelização , Cicatrização/efeitos dos fármacos , Animais , Anti-Infecciosos/farmacologia , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Células Cultivadas , Modelos Animais de Doenças , Cavalos , Humanos , Inflamação/metabolismo , Inflamação/microbiologia , Inflamação/patologia , Queratinócitos/metabolismo , Queratinócitos/microbiologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacosRESUMO
This work rests on our recent report on the successful use of tissue nanotransfection (TNT) delivery of Ascl1, Brn2, and Myt1l (TNTABM) to directly convert skin fibroblasts into electrophysiologically active induced neuronal cells (iN) in vivo. Here we report that in addition to successful neurogenic conversion of cells, TNTABM caused neurotrophic enrichment of the skin stroma. Thus, we asked whether such neurotrophic milieu of the skin can be leveraged to rescue pre-existing nerve fibers under chronic diabetic conditions. Topical cutaneous TNTABM caused elevation of endogenous NGF and other co-regulated neurotrophic factors such as Nt3. TNTABM spared loss of cutaneous PGP9.5+ mature nerve fibers in db/db diabetic mice. This is the first study demonstrating that under conditions of in vivo reprogramming, changes in the tissue microenvironment can be leveraged for therapeutic purposes such as the rescue of pre-existing nerve fibers from its predictable path of loss under conditions of diabetes.
Assuntos
Neuropatias Diabéticas/terapia , Animais , Células Cultivadas , Eletroporação/métodos , Ensaio de Imunoadsorção Enzimática , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Camundongos , Camundongos Endogâmicos C57BL , Pele/metabolismoRESUMO
OBJECTIVE: This study was designed to employ electroceutical principles, as an alternative to pharmacological intervention, to manage wound biofilm infection. Mechanism of action of a United States Food and Drug Administration-cleared wireless electroceutical dressing (WED) was tested in an established porcine chronic wound polymicrobial biofilm infection model involving inoculation with Pseudomonas aeruginosa PAO1 and Acinetobacter baumannii 19606. BACKGROUND: Bacterial biofilms represent a major wound complication. Resistance of biofilm toward pharmacologic interventions calls for alternative therapeutic strategies. Weak electric field has anti-biofilm properties. We have previously reported the development of WED involving patterned deposition of Ag and Zn on fabric. When moistened, WED generates a weak electric field without any external power supply and can be used as any other disposable dressing. METHODS: WED dressing was applied within 2âhours of wound infection to test its ability to prevent biofilm formation. Alternatively, WED was applied after 7 days of infection to study disruption of established biofilm. Wounds were treated with placebo dressing or WED twice a week for 56 days. RESULTS: Scanning electron microscopy demonstrated that WED prevented and disrupted wound biofilm aggregates. WED accelerated functional wound closure by restoring skin barrier function. WED blunted biofilm-induced expression of (1) P. aeruginosa quorum sensing mvfR (pqsR), rhlR and lasR genes, and (2) miR-9 and silencing of E-cadherin. E-cadherin is critically required for skin barrier function. Furthermore, WED rescued against biofilm-induced persistent inflammation by circumventing nuclear factor kappa B activation and its downstream cytokine responses. CONCLUSION: This is the first pre-clinical porcine mechanistic study to recognize the potential of electroceuticals as an effective platform technology to combat wound biofilm infection.
Assuntos
Bandagens , Biofilmes , Cicatrização , Infecção dos Ferimentos/terapia , Animais , Eletricidade , Desenho de Equipamento , Feminino , SuínosRESUMO
Preserving mitochondrial activity is crucial in rescuing cardiac function following acute myocardial ischemia/reperfusion (I/R). The sex difference in myocardial functional recovery has been observed after I/R. Given the key role of mitochondrial connexin43 (Cx43) in cardiac protection initiated by ischemic preconditioning, we aimed to determine the implication of mitochondrial Cx43 in sex-related myocardial responses and to examine the effect of estrogen (17ß-estradiol, E2) on Cx43, particularly mitochondrial Cx43-involved cardiac protection following I/R. Mouse primary cardiomyocytes and isolated mouse hearts (from males, females, ovariectomized females, and doxycycline-inducible Tnnt2-controlled Cx43 knockout without or with acute post-ischemic E2 treatment) were subjected to simulated I/R in culture or Langendorff I/R (25-min warm ischemia/40-min reperfusion), respectively. Mitochondrial membrane potential and mitochondrial superoxide production were measured in cardiomyocytes. Myocardial function and infarct size were determined. Cx43 and its isoform, Gja1-20k, were assessed in mitochondria. Immunoelectron microscopy and co-immunoprecipitation were also used to examine mitochondrial Cx43 and its interaction with estrogen receptor-α by E2 in mitochondria, respectively. There were sex disparities in stress-induced cardiomyocyte mitochondrial function. E2 partially restored mitochondrial activity in cardiomyocytes following acute injury. Post-ischemia infusion of E2 improved functional recovery and reduced infarct size with increased Cx43 content and phosphorylation in mitochondria. Ablation of cardiac Cx43 aggravated mitochondrial damage and abolished E2-mediated cardiac protection during I/R. Female mice were more resistant to myocardial I/R than age-matched males with greater protective role of mitochondrial Cx43 in female hearts. Post-ischemic E2 usage augmented mitochondrial Cx43 content and phosphorylation, increased mitochondrial Gja1-20k, and showed cardiac protection.
Assuntos
Conexina 43/metabolismo , Estrogênios/fisiologia , Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Receptor alfa de Estrogênio/metabolismo , Feminino , Masculino , Potencial da Membrana Mitocondrial , Camundongos Endogâmicos C57BL , Camundongos Knockout , Caracteres Sexuais , Superóxidos/metabolismoRESUMO
Lyophilized keratinocyte-targeted nanocarriers (TLNκ) loaded with locked nucleic acid (LNA) modified anti-miR were developed for topical application to full thickness burn injury. TLNκ were designed to selectively deliver LNA-anti-miR-107 to keratinocytes using the peptide sequence ASKAIQVFLLAG. TLNκ employed DOTAP/DODAP combination pH-responsive lipid components to improve endosomal escape. To minimize interference of clearance by non-targeted cells, especially immune cells in the acute wound microenvironment, surface charge was neutralized. Lyophilization was performed to extend the shelf life of the lipid nanoparticles (LNPs). Encapsulation efficiency of anti-miR in lyophilized TLNκ was estimated to be 96.54%. Cargo stability of lyophilized TLNκ was tested. After 9 days of loading with anti-miR-210, TLNκ was effective in lowering abundance of the hypoxamiR miR-210 in keratinocytes challenged with hypoxia. Keratinocyte uptake of DiD-labeled TLNκ was selective and exceeded 90% within 4 hr. Topical application of hydrogel-dispersed lyophilized TLNκ encapsulating LNA anti-miR-107 twice a week significantly accelerated wound closure and restoration of skin barrier function. TLNκ/anti-miR-107 application depleted miR-107 and upregulated dicer expression, which accelerated differentiation of keratinocytes. Expression of junctional proteins such as claudin-1, loricrin, filaggrin, ZO-1, and ZO-2 were significantly upregulated following TLNκ/anti-miR-107 treatment. These LNPs are promising as topical therapeutic agents in the management of burn injury.