RESUMO
The annual microplastic (MP) release into soils is 4-23 times higher than that into oceans, significantly impacting soil quality. However, the mechanisms underlying how MPs impact soil properties remain largely unknown. Soil-MP interactions are complex because of soil heterogeneity and varying MP properties. This lack of understanding was exacerbated by the diverse experimental conditions and soil types used in this study. Predicting changes in soil properties in the presence of MPs is challenging, laborious, and time-consuming. To address these issues, machine learning was applied to fit datasets from peer-reviewed publications to predict and interpret how MPs influence soil properties, including pH, dissolved organic carbon (DOC), total P, NO3--N, NH4+-N, and acid phosphatase enzyme activity (acid P). Among the developed models, the gradient boost regression (GBR) model showed the highest R2 (0.86-0.99) compared to the decision tree and random forest models. The GBR model interpretation showed that MP properties contributed more than 50% to altering the acid P and NO3--N concentrations in soils, whereas they had a negligible impact on total P and 10-20% impact on soil pH, DOC, and NH4+-N. Specifically, the size of MPs was the dominant factor influencing acid P (89.3%), pH (71.6%), and DOC (44.5%) in soils. NO3--N was mainly affected by the MP type (52.0%). The NH4+-N was mainly affected by the MP dose (46.8%). The quantitative insights into the impact of MPs on soil properties of this study could aid in understanding the roles of MPs in soil systems.
Assuntos
Poluentes do Solo , Solo , Microplásticos , Plásticos , Poluentes do Solo/análiseRESUMO
Arsenic (As) contamination in water is a significant environmental concern with profound implications for human health. Accurate prediction of the adsorption capacity of arsenite [As(III)] and arsenate [As(V)] on biochar is vital for the reclamation and recycling of polluted water resources. However, comprehending the intricate mechanisms that govern arsenic accumulation on biochar remains a formidable challenge. Data from the literature on As adsorption to biochar was compiled and fed into machine learning (ML) based modelling algorithms, including AdaBoost, LGBoost, and XGBoost, in order to build models to predict the adsorption efficiency of As(III) and As(V) to biochar, based on the compositional and structural properties. The XGBoost model showed superior accuracy and performance for prediction of As adsorption efficiency (for As(III): coefficient of determination (R2) = 0.93 and root mean square error (RMSE) = 1.29; for As(V), R2 = 0.99, RMSE = 0.62). The initial concentrations of As(III) and As(V) as well as the dosage of the adsorbent were the most significant factors influencing adsorption, explaining 48 % and 66 % of the variability for As(III) and As(V), respectively. The structural properties and composition of the biochar explained 12 % and 40 %, respectively, of the variability of As(III) adsorption, and 13 % and 21 % of that of As(V). The XGBoost models were validated using experimental data. R2 values were 0.9 and 0.84, and RMSE values 6.5 and 8.90 for As(III) and As(V), respectively. The ML approach can be a valuable tool for improving the treatment of inorganic As in aqueous environments as it can help estimate the optimal adsorption conditions of As in biochar-amended water, and serve as an early warning for As-contaminated water.