RESUMO
The cell is an extremely crowded environment, which is known to have a profound impact on the thermodynamics, functionality, and conformational stability of biomolecules. Speculations from recent theoretical molecular dynamics studies suggest an intriguing size dependence to such purely entropic crowding effects, whereby small molecular weight crowders under constant enthalpy conditions are more effective than larger crowders on a per volume basis. If experimentally confirmed, this would be profoundly significant, as the cellular cytoplasm is also quite concentrated in smaller molecular weight solutes such as inorganic ions, amino acids, and various metabolites. The challenge is to perform such studies isolating entropic effects under isoenthalpic conditions. In this work, we first present results from single-molecule FRET spectroscopy (smFRET) on the molecular size-dependent crowding stabilization of a simple RNA tertiary motif (the GAAA tetraloop-tetraloop receptor), indeed providing evidence in support of the surprising notion in the crowding literature that "smaller is better." Specifically, systematic smFRET studies as a function of crowder solute size reveal that smaller molecules both significantly increase the RNA tertiary folding rate and, yet, simultaneously decrease the unfolding rate, predicting strongly size-dependent stabilization of RNA tertiary structures under crowded cellular conditions. The size dependence of these effects has been explored via systematic variation of crowder size over a broad range of molecular weights (90-3000 amu). Furthermore, corresponding temperature dependent studies indicate the systematic changes in the folding equilibrium to be predominantly entropic in origin, i.e., consistent with a fundamental picture of entropic molecular crowding without additional enthalpic interactions. Most importantly, all trends in the single-molecule crowding data can be quantitatively recapitulated by a simple analytic depletion force model, whereby excluded volume interactions represent the major thermodynamic driving force toward folding. Our study, thus, not only provides experimental evidence and theoretical support for small molecule crowding but also predicts further enhancement of crowding effects for even smaller molecules on a per volume basis.
Assuntos
Transferência Ressonante de Energia de Fluorescência , Microscopia de Força Atômica/métodos , Simulação de Dinâmica Molecular , Proteínas/química , Algoritmos , Humanos , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Dobramento de Proteína , Proteínas/metabolismo , Imagem Individual de Molécula/métodosRESUMO
Pyranine as a new class of fluorescent chemosensor for the Cu(+) ion is reported. The probe is capable of discriminating ranges of cations from the Cu(+) ion, even in competing environment. The dye displayed a rapid fluorescence response (t1/2 = 1.66 min) towards the Cu(+) ion, and the micromolar detection limit enabled the detection of the ion in environmental samples. The observed stoichiometry of complexation between pyranine and Cu(+) was 2 : 1. Interestingly, the sensing characteristic was specific to only neutral pH. A metal-to-ligand charge-transfer (MLCT)-based mechanism of sensing was proposed based on electron spin resonance (EPR), Raman spectroscopic and cyclic voltammetric studies.
Assuntos
Sulfonatos de Arila/química , Técnicas de Química Analítica/instrumentação , Cobre/análise , Corantes Fluorescentes/química , Cor , Concentração de Íons de Hidrogênio , Solubilidade , Espectrometria de Fluorescência , Água/químicaRESUMO
Femtosecond fluorescence upconversion measurements are employed to elucidate the mechanism of ultrafast double proton transfer dynamics of BP(OH)2 inside molecular containers (cucurbit[7]uril (CB7) and ß-cyclodextrin (ß-CD)). Femtosecond up-converted signals of BP(OH)2 in water consist of growth followed by a long decay component (~650 ps). The appearance of the growth component (~35 ps) in the up-converted signal indicates the presence of a two-step sequential proton transfer process of BP(OH)2 in water. Surprisingly, the up-converted signal of BP(OH)2 inside the CB7 nano-cavity does not exhibit any growth component characteristic of a two-step sequential process. Interestingly, the growth component exists inside the nano-cavity of ß-CD (having similar cavity size as that of CB7), inferring the presence of a two-step sequential process of PT inside the ß-CD nano-cavity. The different features of PT dynamics of BP(OH)2 in the above mentioned two macrocyclic hosts may be attributed to the presence and absence of water solvation network surrounding the BP(OH)2 inside the nano-cavities of ß-CD and CB7, respectively. Finally, docking and DFT calculations have been employed in deciphering the molecular pictures of the interactions between BP(OH)2 and the macrocyclic host.
RESUMO
Host-guest interactions between cucurbit[7]uril (CB7) and a cardiotonic drug, milrinone, have been explored using steady state and pico-second time-resolved techniques. A novel fluorescence switch from ultraviolet (UV) to visible (cyan) is observed as a consequence of upward pKa shift of the drug inside the nano-cavity of cucurbit[7]uril.
Assuntos
Hidrocarbonetos Aromáticos com Pontes/química , Cardiotônicos/química , Imidazóis/química , Milrinona/química , Raios Ultravioleta , Modelos Moleculares , Conformação Molecular , Espectrometria de FluorescênciaRESUMO
Photophysics and proton transfer dynamics of an eminent anticancer drug, ellipticine (EPT), have been investigated inside a biocompatible octyl-ß-D-glucoside (OBG) micellar medium using steady state and time-resolved fluorescence spectroscopic techniques. EPT exists as protonated form in aqueous solution of pH 7. When EPT molecules are encapsulated in OBG micelles, protonated form is converted to neutral form in the ground state due to the hydrophobic effect of the micellar environment. Interestingly, steady state fluorescence results indicate the existence of both neutral and protonated forms of EPT in the excited state, even though neutral molecules are selectively excited, and it is attributed to the conversion of neutral to protonated form of EPT by the excited state proton transfer (ESPT) process. A clear isoemissive point in the time-resolved area normalized emission spectra (TRANES) further supports the excited state conversion of neutral to protonated form of EPT. Notably, this kind of proton transfer dynamics is not observed in other conventional micelles, such as, SDS, Triton-X and CTAB. Therefore, the observed ESPT dynamics is believed to be an outcome of combined effects of the local dielectric constant felt by EPT and the local proton concentration at the OBG micellar surface.
Assuntos
Antineoplásicos/química , Elipticinas/química , Glucosídeos/química , Prótons , Teoria Quântica , Micelas , Estrutura Molecular , Espectrometria de Fluorescência , Fatores de TempoRESUMO
A visible fluorescence switch of an eminent anti-carcinogen, ellipticine has been used to probe non-specific protein-DNA interaction. The unique pattern of protein-DNA complexation is depicted for the first time through field emission scanning electron microscopy (FE-SEM) images and spectroscopic techniques.
Assuntos
Antineoplásicos/química , DNA/química , Elipticinas/química , Proteínas/química , Animais , Antineoplásicos/farmacologia , Bovinos , DNA/metabolismo , Elipticinas/farmacologia , Transferência Ressonante de Energia de Fluorescência , Ligação Proteica/efeitos dos fármacos , Proteínas/metabolismo , Albumina Sérica/química , Albumina Sérica/metabolismo , Soroalbumina Bovina/química , Soroalbumina Bovina/metabolismoRESUMO
This article reports the pK(a) shift of an anti-cancer drug, 20(S)-camptothecin (CPT), upon encapsulation into the nanocavity of a cucurbit[7]uril (CB7) macrocycle. Steady-state, time-resolved fluorescence and electrospray ionisation mass spectrometry (ESI-MS) studies provide evidence for the formation of both 1:1 and 2:1 (CB7â CPT) stoichiometries. Astonishingly, we have found that protonation of CPT takes place at a higher concentration of macrocycle (≥50 µM) when the 2:1 stoichiometric complex develops. However, we did not find any proof for protonation of CPT when it is encased by a ß-cyclodextrin cavity, which has a cavity size almost the same as that of CB7. Hence, we conclude that electron-rich carbonyl portals of CB7 have an important role in protonation of the drug in the 2:1 inclusion complex. Docking and semi-empirical quantum chemical calculations have been employed to gain an insight into the molecular picture of orientation of CPT in the inclusion complexes. It is clearly seen from the optimised structure of the 2:1 (CB7â CPT) inclusion complex that the quinoline nitrogen of CPT does not reside within either of the CB7 cavities, rather it is almost sandwiched between two CB7 rings, and therefore, it experiences huge electron density exerted by both carbonyl portals of the macrocycles. As a result, the pK(a) of CPT shifts from 1.2 to 6.2. Finally, controlled release of the drug has been achieved through the introduction of NaCl, which is rich in cells, as an external stimulus. We hope this recognition-mediated binding and release mechanism can be useful for activation of the drug and controlled release of the drug in therapeutic uses.
Assuntos
Antineoplásicos/química , Camptotecina/química , Portadores de Fármacos/química , Nanocápsulas/química , Teoria Quântica , Estabilidade de Medicamentos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Estrutura Molecular , FotoquímicaRESUMO
The effect of cucurbit[7]uril (CB[7]) nano-caging on the photophysical properties, particularly excited-state proton transfer (ESPT) reaction, of an eminent anti-cancer drug, topotecan (TPT), is demonstrated through steady-state and time-resolved fluorescence measurements. TPT in water (pH 6) exists exclusively as the cationic form (C) in the ground state. However, the drug emission mainly comes from the excited-state zwitterionic form (Z*) of TPT, and is attributed to water-assisted ESPT between the 10-hydroxyl group and water, which leads to the transformation of C* to Z* of TPT. In the presence of CB[7], it is found that selective encapsulation of the C form of TPT results in the formation of a 1:1 inclusion complex (CB[7]:TPT), and the ESPT process is inhibited by this encapsulation process. As a result, C* becomes the dominant emitting species in the presence of CB[7] rather than Z*, and fluorescence switching takes place from green to blue. Time-resolved studies also support the existence of CB[7]-encapsulated cationic species as the major emitting species in the presence of the macrocyclic host. Semi-empirical quantum chemical calculations are employed to gain insight into the molecular picture of orientation of TPT in the inclusion complex. It is clearly seen from the optimised structure of 1:1 CB[7]:TPT inclusion complex that both 10-hydroxyl and 9-dimethylaminomethylene groups of TPT lie partly inside the cavity, and thereby inhibit the excited-state transformation of C* to Z* by the ESPT process. Finally, controlled release of the drug is achieved by means of fluorescence switching by introducing NaCl, which is rich in cells, as an external stimulus.
RESUMO
This article reports the alteration of the excited state photophysics of a molecular rotor, namely 9-(dicyano-vinyl)julolidine (DCVJ), which has been extensively used to report protein aggregation and protein conformational changes, by the various cavity sizes of cyclodextrin (CD) macrocyclic hosts, with the help of steady state, time-resolved fluorescence techniques. It is observed that, in the presence of α-CD, the characteristic features of both the monomer and excimer emissions of DCVJ are almost unperturbed. However, in the presence of ß-CD, the excited photophysics of the molecule is significantly perturbed, and it is noted that ß-CD inhibits the excimer formation drift of DCVJ by incorporation of a DCVJ monomer inside its cavity. The most striking findings are observed in the case of γ-CD. Initially, the excimer peak intensity drops and the monomer intensity increases, due to the 1 : 1 DCVJ/γ-CD inclusion complex formation. Above a certain concentration, another DCVJ molecule is accommodated inside the γ-CD cavity and forms an excimer, which is reflected in the intensification of the excimer peak. At higher γ-CD concentration the fluorescence intensity of the excimer shoots up, due to the formation of 2 : 2 host-guest complex, in which an additional γ-CD molecule provides extra stabilization to the excimer. Insight on the molecular picture of this host-guest interaction has been provided by docking studies followed by quantum chemical calculations.
RESUMO
Flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) are derivatives of riboflavin (RF), a water-soluble vitamin, more commonly known as vitamin B(2). Flavins have attracted special attention in the last few years because of the recent discovery of a large number of flavoproteins. In this work, these flavins are used as extrinsic fluorescence markers for probing the microheterogeneous environment of a well-known transport protein, human serum albumin (HSA). Steady-state and time-resolved fluorescence experiments confirm that both FMN and FAD bind to the Sudlow's site-1 (SS1) binding pocket of HSA, where Trp214 resides. In the case of RF, a fraction of RF molecules binds at the SS1, whereas the major fraction of RF molecules remains unbound or surface bound to the protein. Moreover, flavin(s)-HSA interactions are monitored with the help of isothermal titration calorimetry, which provides free energy, enthalpy, and entropy changes of binding along with the binding constants. The molecular picture of binding interaction between flavins and HSA is well explored by docking and molecular dynamics studies.
Assuntos
Flavinas/metabolismo , Simulação de Dinâmica Molecular , Albumina Sérica/metabolismo , Sítios de Ligação , Dicroísmo Circular , Mononucleotídeo de Flavina/química , Mononucleotídeo de Flavina/metabolismo , Flavina-Adenina Dinucleotídeo/química , Flavina-Adenina Dinucleotídeo/metabolismo , Flavinas/química , Fluorometria , Humanos , Ligação Proteica , Albumina Sérica/química , TermodinâmicaRESUMO
In this study, the urea dynamics inside AOT reverse micelle (RM) has been monitored without intervention of water using time-resolved fluorescence techniques from the picosecond to nanosecond time regime. It has been observed that urea dynamics inside the reverse micelle is severely retarded compared to water RM due to the formation of highly networked urea cluster inside the RM. Time-resolved fluorescence anisotropy study also confirms the existence of a confined environment around the dye at higher concentrations of urea inside the reverse micelle. The dynamics of urea-water mixtures inside AOT reverse micelle has also been monitored with increasing urea concentration to get insight about the effect of urea on the overall solvation dynamics feature. It has been observed that with the increase in urea concentration, the overall dynamics becomes slower, and it infers the presence of few water or urea molecules, those strongly associated with surrounding urea and (or) water by hydrogen bonds.
Assuntos
Micelas , Ureia/química , Água/química , Anisotropia , Cumarínicos/química , Estrutura Molecular , Espectrometria de Fluorescência , Termodinâmica , Fatores de TempoRESUMO
Prolyl isomerization is recognized as one of the key regulatory mechanisms, which plays a crucial role in cell signaling, ion channel gating, phage virus infection, and molecular timing. This isomerization is usually slow but often accelerated by an enzyme, called peptidyl-prolyl isomerase (PPIase). In the current project, we investigate using single-molecule force spectroscopy (SMFS) the impact of a bacterial PPIase, SlyD, on the cis-trans isomerization of the proline 2225 (P2225) in an isolated 20th domain of a cytoskeletal mechanosensing protein filamin-A (FlnA20). To explore the FlnA20-PPIase interaction, we have used multiple SMFS modes, like constant velocity, constant distance, and jumping trap experiments. In our previous study, we reported the unique nature of the P2225, which is conserved in all naturally occurring filamins and can slowly (minutes) interconvert between cis-trans isomers, in absence of any PPIase. Our current results show a staggering 25-fold acceleration of the trans-to-cis isomerization rate in the presence of saturating SlyD concentration (7.25 µM) compared to the unenzymatic condition. A SlyD concentration-dependent depletion of the trans isomeric lifetime was also observed. Additionally, we observed that SlyD stabilizes the cis-isomer in the native state of FlnA20 by â¼2 kBT. This is the first single-molecule observation of the cis-trans isomerization catalysis by a PPIase in a mechanosensing protein.
Assuntos
Proteínas de Escherichia coli , Peptidilprolil Isomerase , Proteínas de Transporte/metabolismo , Proteínas de Escherichia coli/metabolismo , Isomerismo , ProlinaRESUMO
The preponderance of a specific d- or l-chirality in fats, sugars, amino acids, nucleic acids, and so on is ubiquitous in nature, yet the biological origin of such chiral dominance (i.e., with one enantiomer overwhelmingly present) remains an open question. One plausible proposal for the predominance of l-chirality in amino acids could be through evolutionary templating of chiral RNA-folding via chaperone activity. To help evaluate this possibility, single molecule fluorescence experiments have been performed that measure the chiral dependence of chaperone folding dynamics for the simple tetraloop-tetraloop receptor (TL-TLR) tertiary binding motif in the presence of a series of chiral amino acids. Specifically, d- vs l-arginine is found to accelerate the unfolding of this RNA motif in a chirally selective fashion, with temperature-dependent studies of the kinetics performed to extract free energy, enthalpy, and entropy landscapes for the underlying thermodynamics. Furthermore, all-atom molecular dynamics (MD) simulations are pursued to provide additional physical insight into this chiral sensitivity, which reveal enantiomer-specific sampling of nucleic acid surfaces by d- vs l-arginine and support a putative mechanism for chirally specific denaturation of RNA tertiary structure by arginine but not other amino acids.
Assuntos
Aminoácidos , Dobramento de RNA , Cinética , Conformação de Ácido Nucleico , RNA , TermodinâmicaRESUMO
Amino acid and nucleic acid interactions are central in biology and may have played a role in the evolutionary development of protein-based life from an early "RNA Universe." To explore the possible role of single amino acids in promoting nucleic acid folding, single-molecule Förster resonance energy transfer experiments have been implemented with a DNA hairpin construct (7 nucleotide double strand with a 40A loop) as a simple model for secondary structure formation. Exposure to positively charged amino acids (arginine and lysine) is found to clearly stabilize the secondary structure. Kinetically, each amino acid promotes folding by generating a large increase in the folding rate with little change in the unfolding rate. From analysis as a function of temperature, arginine and lysine are found to significantly increase the overall exothermicity of folding while imposing only a small entropic penalty on the folding process. Detailed investigations into the kinetics and thermodynamics of this amino acid-induced folding stability reveal arginine and lysine to interact with nucleic acids in a manner reminiscent of monovalent cations. Specifically, these observations are interpreted in the context of an ion atmosphere surrounding the nucleic acid, in which amino acid salts stabilize folding qualitatively like small monovalent cations but also exhibit differences because of the composition of their side chains.
Assuntos
Aminoácidos/química , Ácidos Nucleicos/química , Arginina/química , Cinética , Lisina/química , Conformação de Ácido Nucleico , Temperatura , TermodinâmicaRESUMO
In light of the current models for an early RNA-based universe, the potential influence of simple amino acids on tertiary folding of ribozymal RNA into biochemically competent structures is speculated to be of significant evolutionary importance. In the present work, the folding-unfolding kinetics of a ubiquitous tertiary interaction motif, the GAAA tetraloop-tetraloop receptor (TL-TLR), is investigated by single-molecule fluorescence resonance energy transfer spectroscopy in the presence of natural amino acids both with (e.g., lysine, arginine) and without (e.g., glycine) protonated side chain residues. By way of control, we also investigate the effects of a special amino acid (e.g., proline) and amino acid mimetic (e.g., betaine) that contain secondary or quaternary amine groups rather than a primary amine group. This combination permits systematic study of amino acid induced (or amino acid like) RNA folding dynamics as a function of side chain complexity, pKa, charge state, and amine group content. Most importantly, each of the naturally occurring amino acids is found to destabilize the TL-TLR tertiary folding equilibrium, the kinetic origin of which is dominated by a decrease in the folding rate constant (kdock), also affected by a strongly amino acid selective increase in the unfolding rate constant (kundock). To further elucidate the underlying thermodynamics, single-molecule equilibrium constants (Keq) for TL-TLR folding have been probed as a function of temperature, which reveal an amino acid dependent decrease in both overall exothermicity (ΔΔH° > 0) and entropic cost (-TΔΔS° < 0) for the overall folding process. Temperature-dependent studies on the folding/unfolding kinetic rate constants reveal analogous amino acid specific changes in both enthalpy (ΔΔH⧧) and entropy (ΔΔS⧧) for accessing the transition state barrier. The maximum destabilization of the TL-TLR tertiary interaction is observed for arginine, which is consistent with early studies of arginine and guanidine ion-inhibited self-splicing kinetics for the full Tetrahymena ribozyme [ Yarus , M. ; Christian , E. L. Nature 1989 , 342 , 349 - 350 ; Yarus , M. Science 1988 , 240 , 1751 - 1758 ].
RESUMO
The excited state proton transfer (ESPT) dynamics of a potentially important anticancer drug, Topotecan (TPT), has been explored in aqueous reverse micelle (RM) using steady-state and time-resolved fluorescence measurements. Both the time-resolved emission spectrum and time-resolved area normalized emission spectrum infer the generation of excited state zwitterionic form of TPT from the excited state cationic form of TPT, as a result of ESPT process from the -OH group of TPT to the nearby water molecule. The ESPT dynamics were found to be severely retarded inside the nanocavities of RMs, yielding time constants of 250 ps to 1.0 ns, which is significantly slower than the dynamics obtained in bulk water (32 ps). The observed slow ESPT dynamics in RM compared to bulk water is mainly attributed to the sluggish hydrogen-bonded network dynamics of water molecules inside the nanocavity of RM and the screening of the sodium ions present at the interface.
Assuntos
Antineoplásicos/química , Biomimética , Nanotecnologia , Prótons , Topotecan/química , Polarização de Fluorescência , MicelasRESUMO
The G-quadruplex (GQ-DNA), an alternative structure motif of DNA, has emerged as a novel and exciting target for anticancer drug discovery. GQ-DNA formed in the presence of monovalent cations (Na(+)/K(+)) by human telomeric DNA is a point of interest due to their direct relevance for cellular aging and abnormal cell growths. Small molecules that selectively target and stabilize G-quadruplex structures are considered to be potential therapeutic anticancer agents. Herein, we probe G-quadruplex and proflavine (a well-known DNA intercalator, hence acting as an anticarcinogen) association through steady state and time-resolved fluorescence spectroscopy to explore the effect of stabilization of GQ-DNA by this well-known DNA intercalator. The structural modifications of G-quadruplex upon binding are highlighted through circular dichroism (CD) spectra. Moreover, a detailed insight into the thermodynamics of this interaction has been provided though isothermal titration calorimetry (ITC) studies. The thermodynamic parameters obtained from ITC help to gain knowledge about the nature as well as the driving forces of binding. This present study shows that proflavine (PF) can act as a stabilizer of telomeric GQ-DNA through an entropically as well as enthalpically feasible process with high binding affinity and thereby can be considered as a potential telomerase inhibitor.
Assuntos
DNA/química , Quadruplex G , Proflavina/química , Calorimetria , Humanos , Espectrometria de Fluorescência , TermodinâmicaRESUMO
Graphene oxide based molecular switching of ellipticine (E) has been utilized to probe its efficient loading onto graphene oxide (GO) and subsequent release to intra-cellular biomolecules like DNA/RNA. The green fluorescence of E switches to blue in GO and switches back to green with polynucleotides. The intensified blue emission of the ellipticine-GO (E-GO) complex with human serum albumin (HSA), switches to a bluish green upon addition of dsDNA. Electron microscopy reveals the formation of distinctive 3D assemblies involving GO and biomolecule(s) probably through non-covalent interactions and this is primarily responsible for the biomolcule(s) assisted fluorescence-switching of E. To our knowledge, such morphological patterning of a GO-DNA complex is very unusual, reported here the first time and could find applications in the fabrication of biomedical devices. Moreover, our approach of direct optical detection of drug loading and releasing is very cheap, appealing and will be useful for clinical trial experiments once the cytotoxicity of GO is duly taken care.