Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 44(6): 1393-1406, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38660804

RESUMO

BACKGROUND: Low-dose aspirin is widely used for the secondary prevention of cardiovascular disease. The beneficial effects of low-dose aspirin are attributable to its inhibition of platelet Cox (cyclooxygenase)-1-derived thromboxane A2. Until recently, the use of the Pf4 (platelet factor 4) Cre has been the only genetic approach to generating megakaryocyte/platelet ablation of Cox-1 in mice. However, Pf4-ΔCre displays ectopic expression outside the megakaryocyte/platelet lineage, especially during inflammation. The use of the Gp1ba (glycoprotein 1bα) Cre promises a more specific, targeted approach. METHODS: To evaluate the role of Cox-1 in platelets, we crossed Pf4-ΔCre or Gp1ba-ΔCre mice with Cox-1flox/flox mice to generate platelet Cox-1-/- mice on normolipidemic and hyperlipidemic (Ldlr-/-; low-density lipoprotein receptor) backgrounds. RESULTS: Ex vivo platelet aggregation induced by arachidonic acid or adenosine diphosphate in platelet-rich plasma was inhibited to a similar extent in Pf4-ΔCre Cox-1-/-/Ldlr-/- and Gp1ba-ΔCre Cox-1-/-/Ldlr-/- mice. In a mouse model of tail injury, Pf4-ΔCre-mediated and Gp1ba-ΔCre-mediated deletions of Cox-1 were similarly efficient in suppressing platelet prostanoid biosynthesis. Experimental thrombogenesis and attendant blood loss were similar in both models. However, the impact on atherogenesis was divergent, being accelerated in the Pf4-ΔCre mice while restrained in the Gp1ba-ΔCres. In the former, accelerated atherogenesis was associated with greater suppression of PGI2 biosynthesis, a reduction in the lipopolysaccharide-evoked capacity to produce PGE2 (prostaglandin E) and PGD2 (prostanglandin D), activation of the inflammasome, elevated plasma levels of IL-1ß (interleukin), reduced plasma levels of HDL-C (high-density lipoprotein receptor-cholesterol), and a reduction in the capacity for reverse cholesterol transport. By contrast, in the latter, plasma HDL-C and α-tocopherol were elevated, and MIP-1α (macrophage inflammatory protein-1α) and MCP-1 (monocyte chemoattractant protein 1) were reduced. CONCLUSIONS: Both approaches to Cox-1 deletion similarly restrain thrombogenesis, but a differential impact on Cox-1-dependent prostanoid formation by the vasculature may contribute to an inflammatory phenotype and accelerated atherogenesis in Pf4-ΔCre mice.


Assuntos
Plaquetas , Ciclo-Oxigenase 1 , Modelos Animais de Doenças , Integrases , Camundongos Endogâmicos C57BL , Camundongos Knockout , Agregação Plaquetária , Fator Plaquetário 4 , Receptores de LDL , Animais , Plaquetas/metabolismo , Plaquetas/efeitos dos fármacos , Plaquetas/enzimologia , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 1/deficiência , Agregação Plaquetária/efeitos dos fármacos , Fator Plaquetário 4/genética , Fator Plaquetário 4/metabolismo , Integrases/genética , Receptores de LDL/genética , Receptores de LDL/deficiência , Masculino , Camundongos , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/enzimologia , Aterosclerose/prevenção & controle , Aterosclerose/sangue , Hiperlipidemias/sangue , Hiperlipidemias/genética , Hiperlipidemias/enzimologia , Fenótipo , Proteínas de Membrana , Complexo Glicoproteico GPIb-IX de Plaquetas
2.
J Proteome Res ; 23(9): 3823-3836, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-38836855

RESUMO

Sleep is regulated via circadian mechanisms, but effects of sleep disruption on physiological rhythms, in particular metabolic cycling, remain unclear. To examine this question, we probed diurnal metabolic alterations of two Drosophila short sleep mutants, fumin and sleepless. Samples were collected with high temporal sampling (every 2 h) over 24 h under a 12:12 light:dark cycle, and profiling was done using an ion-switching LCMS/MS method. Fewer metabolites with 24 h oscillations were noted with short sleep (50 and 46 in fumin and sleepless, BH. Q < 0.2 by RAIN analysis) compared to a wild-type control (iso31, 63 with BH. Q < 0.2), and peak phases of the sleep mutants were consolidated into two major phase peaks at mid-day and middle of night. Overall, altered nicotinate/nicotinamide, alanine/aspartate/glutamate, acetylcholine, glyoxylate/dicarboxylate, and TCA cycle metabolism were observed in the short sleep mutants, indicative of increased energetic demand and oxidative stress compared to wild type. Both changes in cycling and discriminant models suggest unique alterations in the dark period indicative of constrained metabolic networks. Thus, we conclude that sleep loss alters metabolic function uniquely throughout the day, and further examination of specific mechanisms is warranted.


Assuntos
Ritmo Circadiano , Mutação , Sono , Animais , Sono/fisiologia , Sono/genética , Ritmo Circadiano/genética , Metaboloma/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fotoperíodo , Estresse Oxidativo/genética , Espectrometria de Massas em Tandem , Escuridão , Metabolômica/métodos , Drosophila/genética , Drosophila/metabolismo
3.
J Pharmacol Exp Ther ; 386(2): 198-204, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37105582

RESUMO

Evidence is scarce to guide the use of nonsteroidal anti-inflammatory drugs (NSAIDs) to mitigate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine-related adverse effects, given the possibility of blunting the desired immune response. In this pilot study, we deeply phenotyped a small number of volunteers who did or did not take NSAIDs concomitant with SARS-CoV-2 immunizations to seek initial information on the immune response. A SARS-CoV-2 vaccine-specific receptor binding domain (RBD) IgG antibody response and efficacy in the evoked neutralization titers were evident irrespective of concomitant NSAID consumption. Given the sample size, only a large and consistent signal of immunomodulation would have been detectable, and this was not apparent. However, the information gathered may inform the design of a definitive clinical trial. Here we report a series of divergent omics signals that invites additional hypotheses testing. SIGNIFICANCE STATEMENT: The impact of nonsteroidal anti-inflammatory drugs (NSAIDs) on the immune response elicited by repeat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunizations was profiled by immunophenotypic, proteomic, and metabolomic approaches in a clinical pilot study of small sample size. A SARS-CoV-2 vaccine-specific immune response was evident irrespective of concomitant NSAID consumption. The information gathered may inform the design of a definitive clinical trial.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Projetos Piloto , Proteômica , Anticorpos Antivirais , Imunoglobulina G , Vacinação , Imunidade , Anti-Inflamatórios
4.
Proc Natl Acad Sci U S A ; 114(8): E1528-E1535, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28167750

RESUMO

Recent studies have shown that human cytomegalovirus (HCMV) can induce a robust increase in lipid synthesis which is critical for the success of infection. In mammalian cells the central precursor for lipid biosynthesis, cytosolic acetyl CoA (Ac-CoA), is produced by ATP-citrate lyase (ACLY) from mitochondria-derived citrate or by acetyl-CoA synthetase short-chain family member 2 (ACSS2) from acetate. It has been reported that ACLY is the primary enzyme involved in making cytosolic Ac-CoA in cells with abundant nutrients. However, using CRISPR/Cas9 technology, we have shown that ACLY is not essential for HCMV growth and virally induced lipogenesis. Instead, we found that in HCMV-infected cells glucose carbon can be used for lipid synthesis by both ACLY and ACSS2 reactions. Further, the ACSS2 reaction can compensate for the loss of ACLY. However, in ACSS2-KO human fibroblasts both HCMV-induced lipogenesis from glucose and viral growth were sharply reduced. This reduction suggests that glucose-derived acetate is being used to synthesize cytosolic Ac-CoA by ACSS2. Previous studies have not established a mechanism for the production of acetate directly from glucose metabolism. Here we show that HCMV-infected cells produce more glucose-derived pyruvate, which can be converted to acetate through a nonenzymatic mechanism.


Assuntos
ATP Citrato (pro-S)-Liase/metabolismo , Acetato-CoA Ligase/metabolismo , Ácido Acético/metabolismo , Acetilcoenzima A/metabolismo , Infecções por Citomegalovirus/metabolismo , Citomegalovirus/fisiologia , Lipogênese , ATP Citrato (pro-S)-Liase/genética , Acetato-CoA Ligase/genética , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Infecções por Citomegalovirus/virologia , Citosol/metabolismo , Fibroblastos , Regulação Enzimológica da Expressão Gênica , Técnicas de Inativação de Genes , Glucose/metabolismo , Glicólise , Interações Hospedeiro-Patógeno , Humanos , Mitocôndrias/metabolismo , Cultura Primária de Células , Ácido Pirúvico/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo
5.
Cytokine ; 112: 32-43, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30057363

RESUMO

Metabolomics refers to top-down systems biological analysis of metabolites in biological specimens. Phenotypic proximity of metabolites makes them interesting candidates for studying biomarkers of environmental stressors such as parasitic infections. Moreover, the host-parasite interaction directly impinges upon metabolic pathways since the parasite uses the host metabolite pool as a biosynthetic resource. Malarial infection, although not recognized as a classic metabolic disorder, often leads to severe metabolic changes such as hypoglycemia and lactic acidosis. Thus, metabolomic analysis of the infection has become an invaluable tool for promoting a better understanding of the host-parasite interaction and for the development of novel therapeutics. In this review, we summarize the current knowledge obtained from metabolomic studies of malarial infection in rodent models and human patients. Metabolomic analysis of experimental rodent malaria has provided significant insights into the mechanisms of disease progression including utilization of host resources by the parasite, sexual dimorphism in metabolic phenotypes, and cellular changes in host metabolism. Moreover, these studies also provide proof of concept for prediction of cerebral malaria. On the other hand, metabolite analysis of patient biofluids generates extensive data that could be of use in identifying biomarkers of infection severity and in monitoring disease progression. Through the use of metabolomic datasets one hopes to assess crucial infection-specific issues such as clinical severity, drug resistance, therapeutic targets, and biomarkers. Also discussed are nascent or newly emerging areas of metabolomics such as pre-erythrocytic stages of the infection and the host immune response. This review is organized in four broad sections-methodologies for metabolomic analysis, rodent infection models, studies of human clinical specimens, and potential of immunometabolomics. Data summarized in this review should serve as a springboard for novel hypothesis testing and lead to a better understanding of malarial infection and parasite biology.


Assuntos
Interações Hospedeiro-Parasita/fisiologia , Malária/metabolismo , Malária/parasitologia , Vertebrados/metabolismo , Vertebrados/parasitologia , Animais , Biomarcadores/metabolismo , Progressão da Doença , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Humanos , Redes e Vias Metabólicas/fisiologia , Metabolômica/métodos
6.
Proc Natl Acad Sci U S A ; 112(8): 2569-74, 2015 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-25675494

RESUMO

Sleep is an essential biological process that is thought to have a critical role in metabolic regulation. In humans, reduced sleep duration has been associated with risk for metabolic disorders, including weight gain, diabetes, obesity, and cardiovascular disease. However, our understanding of the molecular mechanisms underlying effects of sleep loss is only in its nascent stages. In this study we used rat and human models to simulate modern-day conditions of restricted sleep and addressed cross-species consequences via comprehensive metabolite profiling. Serum from sleep-restricted rats was analyzed using polar and nonpolar methods in two independent datasets (n = 10 per study, 3,380 measured features, 407 identified). A total of 38 features were changed across independent experiments, with the majority classified as lipids (18 from 28 identified). In a parallel human study, 92 metabolites were identified as potentially significant, with the majority also classified as lipids (32 of 37 identified). Intriguingly, two metabolites, oxalic acid and diacylglycerol 36:3, were robustly and quantitatively reduced in both species following sleep restriction, and recovered to near baseline levels after sleep restriction (P < 0.05, false-discovery rate < 0.2). Elevated phospholipids were also noted after sleep restriction in both species, as well as metabolites associated with an oxidizing environment. In addition, polar metabolites reflective of neurotransmitters, vitamin B3, and gut metabolism were elevated in sleep-restricted humans. These results are consistent with induction of peroxisome proliferator-activated receptors and disruptions of the circadian clock. The findings provide a potential link between known pathologies of reduced sleep duration and metabolic dysfunction, and potential biomarkers for sleep loss.


Assuntos
Diglicerídeos/metabolismo , Ácido Oxálico/metabolismo , Privação do Sono/metabolismo , Animais , Biomarcadores/sangue , Ritmo Circadiano , Modelos Animais de Doenças , Metabolismo Energético , Feminino , Trato Gastrointestinal/microbiologia , Humanos , Masculino , Metaboloma , Metabolômica , Microbiota , Pessoa de Meia-Idade , Neurotransmissores/metabolismo , Niacinamida/metabolismo , Estresse Oxidativo , PPAR gama/metabolismo , Fenótipo , Ratos Sprague-Dawley , Reprodutibilidade dos Testes , Privação do Sono/sangue , Especificidade da Espécie , Fatores de Tempo , Adulto Jovem
7.
Anal Bioanal Chem ; 409(29): 6731-6738, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29030664

RESUMO

Nuclear magnetic resonance (NMR)-based metabolomics relies mostly on 1D NMR; however, the technique is limited by overlap of the signals from the metabolites. In order to circumvent this problem, 2D 1H-13C correlation spectroscopy techniques are often used. However owing to poorer natural abundance and gyromagnetic ratio of 13C, the acquisition time for 2D 1H-13C heteronuclear single quantum coherence spectroscopy (HSQC) is long. This makes it almost impossible to be used in high throughput study. We have reported the application of selective optimized flip angle short transient (SOFAST) technique coupled to heteronuclear multiple quantum correlation (HMQC) along with nonlinear sampling (NUS) in urine and serum samples. This technique takes sevenfold less experimental time than the conventional 1H-13C HSQC experiment with retention of almost all molecular information. Hence, this can be used for high throughput study. Graphical abstract SOFAST-HMQC is a two-dimensional NMR technique that significantly decreases experimental time without loss of information. This technique is applied in complex biofluid samples that are used for high throughput metabolomics studies and shows promise of better information recovery than conventional two-dimensional NMR technique in shorter time.


Assuntos
Análise Química do Sangue/métodos , Espectroscopia de Ressonância Magnética , Metabolômica/métodos , Urinálise/métodos , Humanos , Metabolômica/instrumentação , Fatores de Tempo
8.
J Biol Chem ; 290(33): 20407-16, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26124278

RESUMO

Breakdown of the major sleep-promoting neurotransmitter, γ-aminobutyric acid (GABA), in the GABA shunt generates catabolites that may enter the tricarboxylic acid cycle, but it is unknown whether catabolic by-products of the GABA shunt actually support metabolic homeostasis. In Drosophila, the loss of the specific enzyme that degrades GABA, GABA transaminase (GABAT), increases sleep, and we show here that it also affects metabolism such that flies lacking GABAT fail to survive on carbohydrate media. Expression of GABAT in neurons or glia rescues this phenotype, indicating a general metabolic function for this enzyme in the brain. As GABA degradation produces two catabolic products, glutamate and succinic semialdehyde, we sought to determine which was responsible for the metabolic phenotype. Through genetic and pharmacological experiments, we determined that glutamate, rather than succinic semialdehyde, accounts for the metabolic phenotype of gabat mutants. This is supported by biochemical measurements of catabolites in wild-type and mutant animals. Using in vitro labeling assays, we found that inhibition of GABAT affects energetic pathways. Interestingly, we also observed that gaba mutants display a general disruption in bioenergetics as measured by altered levels of tricarboxylic acid cycle intermediates, NAD(+)/NADH, and ATP levels. Finally, we report that the effects of GABAT on sleep do not depend upon glutamate, indicating that GABAT regulates metabolic and sleep homeostasis through independent mechanisms. These data indicate a role of the GABA shunt in the development of metabolic risk and suggest that neurological disorders caused by altered glutamate or GABA may be associated with metabolic disruption.


Assuntos
4-Aminobutirato Transaminase/metabolismo , Metabolismo Energético , Homeostase , Sono , 4-Aminobutirato Transaminase/genética , Animais , Encéfalo/enzimologia , Encéfalo/metabolismo , Encéfalo/fisiologia , Drosophila melanogaster , Ácido Glutâmico/metabolismo , Ácidos Cetoglutáricos/metabolismo , Mutação , Estresse Oxidativo
9.
Malar J ; 15: 198, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27066781

RESUMO

BACKGROUND: Cerebral malaria (CM) is a life-threatening disease, caused mainly by Plasmodium falciparum in humans. In adults only 1-2% of P. falciparum-infected hosts transit to the cerebral form of the disease while most exhibit non-cerebral malaria (NCM). The perturbed metabolic pathways of CM and NCM have been reported. Early marker(s) of CM is(are) not known and by the time a patient exhibits the pathological symptoms of CM, the disease has progressed. Murine CM, like the human disease, is difficult to assign to specific animals at early stage and hence the challenge to treat CM at pre-clinical stage of the disease. This is the first report of prediction of CM in mice using a novel strategy based on (1)H nuclear magnetic resonance (NMR)-based metabolomics. METHODS: Mice were infected with malarial parasites, and serum was collected from all the animals (CM/NCM) before CM symptoms were apparent. The assignment of mice as NCM/CM at an early time point is based on their symptoms at days 8-9 post-infection (pi). The serum samples were subjected to (1)H NMR-based metabolomics. (1)H NMR spectra of the serum samples, collected at various time points (pi) in multiple sets of experiments, were subjected to multivariate analyses. RESULTS: The results from orthogonal partial least square discriminant analyses (OPLS-DA) suggest that the animals with CM start to diverge out in metabolic profile and were distinct on day 4 pi, although by physical observation they were indistinguishable from the NCM. The metabolites that appeared to contribute to this distinction were serum lipids and lipoproteins, and 14-19% enhancement was observed in mice afflicted with CM. A cut-off of 14% change of total lipoproteins in serum predicts 54-71% CM in different experiments at day 4 pi. CONCLUSION: This study clearly demonstrates the possibility of differentiating and identifying animals with CM at an early, pre-clinical stage. The strategy, based on metabolite profile of serum, tested with different batches of animals in both the sex and across different times of the year, is found to be robust. This is the first such study of pre-clinical prognosis of CM.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Malária Cerebral/diagnóstico , Metabolômica/métodos , Soro/química , Animais , Modelos Animais de Doenças , Diagnóstico Precoce , Feminino , Malária Cerebral/patologia , Masculino , Camundongos Endogâmicos C57BL , Plasmodium falciparum
10.
Amino Acids ; 47(10): 2229-36, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25991390

RESUMO

Branched Chain Amino Acids (BCAAs) are related to different aspects of diseases like pathogenesis, diagnosis and even prognosis. While in some diseases, levels of all the BCAAs are perturbed; in some cases, perturbation occurs in one or two while the rest remain unaltered. In case of ischemic heart disease, there is an enhanced level of plasma leucine and isoleucine but valine level remains unaltered. In 'Hypervalinemia', valine is elevated in serum and urine, but not leucine and isoleucine. Therefore, identification of these metabolites and profiling of individual BCAA in a quantitative manner in body-fluid like blood plasma/serum have long been in demand. (1)H NMR resonances of the BCAAs overlap with each other which complicates quantification of individual BCAAs. Further, the situation is limited by the overlap of broad resonances of lipoprotein with the resonances of BCAAs. The widely used commercially available kits cannot differentially estimate the BCAAs. Here, we have achieved proper identification and characterization of these BCAAs in serum in a quantitative manner employing a Nuclear Magnetic Resonance-based technique namely T2-edited Correlation Spectroscopy (COSY). This approach can easily be extended to other body fluids like bile, follicular fluids, saliva, etc.


Assuntos
Aminoácidos de Cadeia Ramificada/sangue , Imageamento por Ressonância Magnética/métodos , Metabolômica/métodos , Animais , Feminino , Camundongos , Camundongos Endogâmicos C57BL
11.
Brain Behav Immun ; 42: 123-37, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24953429

RESUMO

Cerebral malaria is associated with cerebrovascular damage and neurological sequelae. However, the neurological consequences of uncomplicated malaria, the most prevalent form of the disease, remain uninvestigated. Here, using a mild malaria model, we show that a single Plasmodium chabaudi adami infection in adult mice induces neuroinflammation, neurogenic, and behavioral changes in the absence of a blood-brain barrier breach. Using cytokine arrays we show that the infection induces differential serum and brain cytokine profiles, both at peak parasitemia and 15days post-parasite clearance. At the peak of infection, along with the serum, the brain also exhibited a definitive pro-inflammatory cytokine profile, and gene expression analysis revealed that pro-inflammatory cytokines were also produced locally in the hippocampus, an adult neurogenic niche. Hippocampal microglia numbers were enhanced, and we noted a shift to an activated profile at this time point, accompanied by a striking redistribution of the microglia to the subgranular zone adjacent to hippocampal neuronal progenitors. In the hippocampus, a distinct decline in progenitor turnover and survival was observed at peak parasitemia, accompanied by a shift from neuronal to glial fate specification. Studies in transgenic Nestin-GFP reporter mice demonstrated a decline in the Nestin-GFP(+)/GFAP(+) quiescent neural stem cell pool at peak parasitemia. Although these cellular changes reverted to normal 15days post-parasite clearance, specific brain cytokines continued to exhibit dysregulation. Behavioral analysis revealed selective deficits in social and anxiety-like behaviors, with no change observed in locomotor, cognitive, and depression-like behaviors, with a return to baseline at recovery. Collectively, these findings indicate that even a single episode of mild malaria results in alterations of the brain cytokine profile, causes specific behavioral dysfunction, is accompanied by hippocampal microglial activation and redistribution, and a definitive, but transient, suppression of adult hippocampal neurogenesis.


Assuntos
Ansiedade/etiologia , Comportamento Animal/fisiologia , Encéfalo/patologia , Malária/complicações , Microglia/patologia , Neurogênese/fisiologia , Comportamento Social , Animais , Ansiedade/patologia , Ansiedade/fisiopatologia , Encéfalo/fisiopatologia , Hipocampo/patologia , Hipocampo/fisiopatologia , Inflamação/etiologia , Inflamação/patologia , Inflamação/fisiopatologia , Malária/patologia , Malária/fisiopatologia , Masculino , Camundongos
12.
J Assist Reprod Genet ; 31(9): 1195-204, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24965760

RESUMO

PURPOSE: The aim of this study was to analyze the seminal plasma of patients with idiopathic/male factor infertility and healthy controls with proven fertility by NMR spectroscopy, with a hope of establishing difference in biomarker profiles, if any, between the groups. METHODS: A total of 103 subjects visiting the infertility clinic of Manipal University with normozoospermic parameters, oligozoospermia, asthenozoospermia, azoospermia and teratozoospermia were included. Semen characteristics were analysed by standard criteria. Seminal plasma was subjected to NMR spectroscopy at a 700 MHz (1)H frequency. The resultant data was analyzed by appropriate software. RESULTS: The analysis revealed significant differences between the fertile control group and other forms of male infertility. Interestingly, seminal plasma profile of the idiopathic infertility group showed distinct segregation from the control population as well as other infertile groups. The difference in biomarker profiles between the idiopathic infertility and the rest of the groups combined could originate from either the up-regulation or down regulation of a several compounds, including lysine, arginine, tyrosine, citrate, proline and fructose. CONCLUSION: Our data suggests the presence of a metabolic reason behind the origin of idiopathic infertility. (1)H NMR based metabonomic profiling based on concentration of biomarker lysine has the potential to aid in the detection and diagnosis of idiopathic infertility in an efficient manner.


Assuntos
Infertilidade Masculina/metabolismo , Adulto , Biomarcadores/metabolismo , Humanos , Masculino , Metabolômica , Análise Multivariada , Ressonância Magnética Nuclear Biomolecular , Análise do Sêmen/métodos
13.
Aging Cell ; 23(4): e14082, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38204362

RESUMO

Circadian cycles of sleep:wake and gene expression change with age in all organisms examined. Metabolism is also under robust circadian regulation, but little is known about how metabolic cycles change with age and whether these contribute to the regulation of behavioral cycles. To address this gap, we compared cycling of metabolites in young and old Drosophila and found major age-related variations. A significant model separated the young metabolic profiles by circadian timepoint, but could not be defined for the old metabolic profiles due to the greater variation in this dataset. Of the 159 metabolites measured in fly heads, we found 17 that cycle by JTK analysis in young flies and 17 in aged. Only four metabolites overlapped in the two groups, suggesting that cycling metabolites are distinct in young and old animals. Among our top cyclers exclusive to young flies were components of the pentose phosphate pathway (PPP). As the PPP is important for buffering reactive oxygen species, and overexpression of glucose-6-phosphate dehydrogenase (G6PD), a key component of the PPP, was previously shown to extend lifespan in Drosophila, we asked if this manipulation also affects sleep:wake cycles. We found that overexpression in circadian clock neurons decreases sleep in association with an increase in cellular calcium and mitochondrial oxidation, suggesting that altering PPP activity affects neuronal activity. Our findings elucidate the importance of metabolic regulation in maintaining patterns of neural activity, and thereby sleep:wake cycles.


Assuntos
Relógios Circadianos , Drosophila , Animais , Drosophila/metabolismo , Sono , Espécies Reativas de Oxigênio/metabolismo , Via de Pentose Fosfato , Ritmo Circadiano
14.
Life (Basel) ; 13(8)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37629541

RESUMO

BACKGROUND: The major focus of metabolomics research has been confined to the readily available biofluids-urine and blood serum. However, red blood cells (RBCs) are also readily available, and may be a source of a wealth of information on vertebrates. However, the comprehensive metabolomic characterization of RBCs is minimal although they exhibit perturbations in various physiological states. RBCs act as the host of malarial parasites during the symptomatic stage. Thus, understanding the changes in RBC metabolism during infection is crucial for a better understanding of disease progression. METHODS: The metabolome of normal RBCs obtained from Swiss mice was investigated using 1H NMR spectroscopy. Several 1 and 2-dimensional 1H NMR experiments were employed for this purpose. The information from this study was used to investigate the changes in the RBC metabolome during the early stage of infection (~1% infected RBCs) by Plasmodium bergheii ANKA. RESULTS: We identified over 40 metabolites in RBCs. Several of these metabolites were quantitated using 1H NMR spectroscopy. The results indicate changes in the choline/membrane components and other metabolites during the early stage of malaria. CONCLUSIONS: The paper reports the comprehensive characterization of the metabolome of mouse RBCs. Changes during the early stage of malarial infection suggest significant metabolic alteration, even at low parasite content (~1%). GENERAL SIGNIFICANCE: This study should be of use in maximizing the amount of information available from metabolomic experiments on the cellular components of blood. The technique can be directly applied to real-time investigation of infectious diseases that target RBCs.

15.
J Am Soc Mass Spectrom ; 34(9): 1970-1978, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37540625

RESUMO

Increased access to cheap and rapid mass spectrometry testing of biofluids is desirable for the analysis of disorders and diseases that may be linked to alterations in metabolite or lipid levels. The objective of this study is to establish an easily customized high-throughput workflow for the analysis of biological samples using desorption electrospray ionization-mass spectrometry (DESI-MS). The guiding principles of this workflow are the use of low-cost, open-source, and readily accessible materials with high-throughput and reproducibility. The design consists of 3 steps: (1) PARAFILM surface customization of size, shape, and depth of features on PARAFILM via 3D printed molds; (2) sample spotting via high-throughput robotics using the relatively inexpensive and open-source Opentrons platform to reduce variability and increase reliability of sample spotting; and (3) an open-source point-and-click graphical user interface (MSI.EAGLE) for data analysis via the R statistical language building on the Cardinal package. Here we describe this workflow and test optimal surface ionization characteristics by comparison of serum extracts spotted on PARAFILM and on PTFE (porous and nonporous). Untargeted analysis across three surfaces suggests that they are all suitable for ionization of a wide range of metabolites and lipids, with 3983 m/z features detected. Differential analysis of polar vs nonpolar serum extracts suggests that ∼80% of ions are desorbed preferentially from different surfaces. PARAFILM is less impacted by the interference of background ions derived from the surface. The developed system allows for a wide range of researchers to access custom surface design workflows and high-throughput analyses in a highly cost-effective manner.


Assuntos
Lipidômica , Parafina , Reprodutibilidade dos Testes , Lipidômica/métodos , Espectrometria de Massas por Ionização por Electrospray/métodos , Íons
16.
bioRxiv ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37961245

RESUMO

Sleep is an almost universally required state in biology. Disrupted sleep has been associated with adverse health risks including metabolic perturbations. Sleep is in part regulated via circadian mechanisms, however, metabolic dysfunction at different times of day arising from sleep disruption is unclear. We used targeted liquid chromatography-mass spectrometry to probe metabolic alterations using high-resolution temporal sampling of two Drosophila short sleep mutants, fumin and sleepless, across a circadian day. Discriminant analyses revealed overall distinct metabolic profiles for mutants when compared to a wild type dataset. Altered levels of metabolites involved in nicotinate/nicotinamide, alanine, aspartate, and glutamate, glyoxylate and dicarboxylate metabolism, and the TCA cycle were observed in mutants suggesting increased energetic demands. Furthermore, rhythmicity analyses revealed fewer 24 hr rhythmic metabolites in both mutants. Interestingly, mutants displayed two major peaks in phases while wild type displayed phases that were less concerted. In contrast to 24 hr rhythmic metabolites, an increase in the number of 12 hr rhythmic metabolites was observed in fumin while sleepless displayed a decrease. These results support that decreased sleep alters the overall metabolic profile with short sleep mutants displaying altered metabolite levels associated with a number of pathways in addition to altered neurotransmitter levels.

17.
Sleep ; 46(11)2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37738102

RESUMO

STUDY OBJECTIVES: Insufficient sleep is a concerning hallmark of modern society because sleep deprivation (SD) is a risk factor for neurodegenerative and cardiometabolic disorders. SD imparts an aging-like effect on learning and memory, although little is known about possible common molecular underpinnings of SD and aging. Here, we examine this question by profiling metabolic features across different tissues after acute SD in young adult and aged mice. METHODS: Young adult and aged mice were subjected to acute SD for 5 hours. Blood plasma, hippocampus, and liver samples were subjected to UPLC-MS/MS-based metabolic profiling. RESULTS: SD preferentially impacts peripheral plasma and liver profiles (e.g. ketone body metabolism) whereas the hippocampus is more impacted by aging. We further demonstrate that aged animals exhibit SD-like metabolic features at baseline. Hepatic alterations include parallel changes in nicotinamide metabolism between aging and SD in young animals. Overall, metabolism in young adult animals is more impacted by SD, which in turn induces aging-like features. A set of nine metabolites was classified (79% correct) based on age and sleep status across all four groups. CONCLUSIONS: Our metabolic observations demonstrate striking parallels to previous observations in studies of learning and memory and define a molecular metabolic signature of sleep loss and aging.


Assuntos
Privação do Sono , Espectrometria de Massas em Tandem , Camundongos , Animais , Privação do Sono/complicações , Privação do Sono/metabolismo , Cromatografia Líquida , Sono , Envelhecimento
18.
bioRxiv ; 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37961230

RESUMO

Rhythmicity is a central feature of behavioral and biological processes including metabolism, however, the mechanisms of metabolite cycling are poorly understood. A robust oscillation in a network of key metabolite pathways downstream of glucose is described in humans, then these pathways mechanistically probed through purpose-built 13C6-glucose isotope tracing in Drosophila every 4h. A temporal peak in biosynthesis was noted by broad labelling of pathways downstream of glucose in wild-type flies shortly following lights on. Krebs cycle labelling was generally increased in a hyperactive mutant (fumin) along with glycolysis labelling primarily observed at dawn. Surprisingly, neither underlying feeding rhythms nor the presence of food explains the rhythmicity of glucose processing across genotypes. These results are consistent with clinical data demonstrating detrimental effects of mis-timed energy intake. This approach provides a window into the dynamic range of metabolic processing ability through the day and mechanistic basis for exploring circadian metabolic homeostasis in disease states.

19.
Sci Transl Med ; 15(696): eabo2022, 2023 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-37196066

RESUMO

Longitudinal studies associate shiftwork with cardiometabolic disorders but do not establish causation or elucidate mechanisms of disease. We developed a mouse model based on shiftwork schedules to study circadian misalignment in both sexes. Behavioral and transcriptional rhythmicity were preserved in female mice despite exposure to misalignment. Females were protected from the cardiometabolic impact of circadian misalignment on a high-fat diet seen in males. The liver transcriptome and proteome revealed discordant pathway perturbations between the sexes. Tissue-level changes were accompanied by gut microbiome dysbiosis only in male mice, biasing toward increased potential for diabetogenic branched chain amino acid production. Antibiotic ablation of the gut microbiota diminished the impact of misalignment. In the United Kingdom Biobank, females showed stronger circadian rhythmicity in activity and a lower incidence of metabolic syndrome than males among job-matched shiftworkers. Thus, we show that female mice are more resilient than males to chronic circadian misalignment and that these differences are conserved in humans.


Assuntos
Doenças Cardiovasculares , Microbioma Gastrointestinal , Humanos , Masculino , Feminino , Animais , Camundongos , Dieta Hiperlipídica , Caracteres Sexuais , Ritmo Circadiano
20.
Clin Transl Med ; 13(11): e1440, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37948331

RESUMO

BACKGROUND: Lipids may influence cellular penetrance by viral pathogens and the immune response that they evoke. We deeply phenotyped the lipidomic response to SARs-CoV-2 and compared that with infection with other pathogens in patients admitted with acute respiratory distress syndrome to an intensive care unit (ICU). METHODS: Mass spectrometry was used to characterise lipids and relate them to proteins, peripheral cell immunotypes and disease severity. RESULTS: Circulating phospholipases (sPLA2, cPLA2 (PLA2G4A) and PLA2G2D) were elevated on admission in all ICU groups. Cyclooxygenase, lipoxygenase and epoxygenase products of arachidonic acid (AA) were elevated in all ICU groups compared with controls. sPLA2 predicted severity in COVID-19 and correlated with TxA2, LTE4 and the isoprostane, iPF2α-III, while PLA2G2D correlated with LTE4. The elevation in PGD2, like PGI2 and 12-HETE, exhibited relative specificity for COVID-19 and correlated with sPLA2 and the interleukin-13 receptor to drive lymphopenia, a marker of disease severity. Pro-inflammatory eicosanoids remained correlated with severity in COVID-19 28 days after admission. Amongst non-COVID ICU patients, elevations in 5- and 15-HETE and 9- and 13-HODE reflected viral rather than bacterial disease. Linoleic acid (LA) binds directly to SARS-CoV-2 and both LA and its di-HOME products reflected disease severity in COVID-19. In healthy marines, these lipids rose with seroconversion. Eicosanoids linked variably to the peripheral cellular immune response. PGE2, TxA2 and LTE4 correlated with T cell activation, as did PGD2 with non-B non-T cell activation. In COVID-19, LPS stimulated peripheral blood mononuclear cell PGF2α correlated with memory T cells, dendritic and NK cells while LA and DiHOMEs correlated with exhausted T cells. Three high abundance lipids - ChoE 18:3, LPC-O-16:0 and PC-O-30:0 - were altered specifically in COVID. LPC-O-16:0 was strongly correlated with T helper follicular cell activation and all three negatively correlated with multi-omic inflammatory pathways and disease severity. CONCLUSIONS: A broad based lipidomic storm is a predictor of poor prognosis in ARDS. Alterations in sPLA2, PGD2 and 12-HETE and the high abundance lipids, ChoE 18:3, LPC-O-16:0 and PC-O-30:0 exhibit relative specificity for COVID-19 amongst such patients and correlate with the inflammatory response to link to disease severity.


Assuntos
COVID-19 , Fosfolipases A2 Secretórias , Sepse , Humanos , SARS-CoV-2 , Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico , Lipidômica , Leucócitos Mononucleares , Leucotrieno E4 , Prostaglandina D2 , Ciclo-Oxigenase 2 , Eicosanoides
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA