RESUMO
The 9.4 T scanner in Maastricht is a whole-body magnet with head gradients and parallel RF transmit capability. At the time of the design, it was conceptualized to be one of the best fMRI scanners in the world, but it has also been used for anatomical and diffusion imaging. 9.4 T offers increases in sensitivity and contrast, but the technical ultra-high field (UHF) challenges, such as field inhomogeneities and constraints set by RF power deposition, are exacerbated compared to 7 T. This article reviews some of the 9.4 T work done in Maastricht. Functional imaging experiments included blood oxygenation level-dependent (BOLD) and blood-volume weighted (VASO) fMRI using different readouts. BOLD benefits from shorter T2* at 9.4 T while VASO from longer T1. We show examples of both ex vivo and in vivo anatomical imaging. For many applications, pTx and optimized coils are essential to harness the full potential of 9.4 T. Our experience shows that, while considerable effort was required compared to our 7 T scanner, we could obtain high-quality anatomical and functional data, which illustrates the potential of MR acquisitions at even higher field strengths. The practical challenges of working with a relatively unique system are also discussed.
Assuntos
Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodosRESUMO
The ability to image human tissue samples in 3D, with both cellular resolution and a large field of view (FOV), can improve fundamental and clinical investigations. Here, we demonstrate the feasibility of light-sheet imaging of ~5 cm3 sized formalin fixed human brain and up to ~7 cm3 sized formalin fixed paraffin embedded (FFPE) prostate cancer samples, processed with the FFPE-MASH protocol. We present a light-sheet microscopy prototype, the cleared-tissue dual view Selective Plane Illumination Microscope (ct-dSPIM), capable of fast 3D high-resolution acquisitions of cm3 scale cleared tissue. We used mosaic scans for fast 3D overviews of entire tissue samples or higher resolution overviews of large ROIs with various speeds: (a) Mosaic 16 (16.4 µm isotropic resolution, ~1.7 h/cm3), (b) Mosaic 4 (4.1 µm isotropic resolution, ~ 5 h/cm3) and (c) Mosaic 0.5 (0.5 µm near isotropic resolution, ~15.8 h/cm3). We could visualise cortical layers and neurons around the border of human brain areas V1&V2, and could demonstrate suitable imaging quality for Gleason score grading in thick prostate cancer samples. We show that ct-dSPIM imaging is an excellent technique to quantitatively assess entire MASH prepared large-scale human tissue samples in 3D, with considerable future clinical potential.
Assuntos
Próstata , Neoplasias da Próstata , Masculino , Humanos , Próstata/diagnóstico por imagem , Microscopia/métodos , Encéfalo/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , FormaldeídoRESUMO
The mesoscopic organization of the human neocortex is of great interest for cognitive neuroscience. However, fMRI in humans typically maps the functional units of cognitive processing on a macroscopic level. With the advent of ultra-high field MRI (≥7T), it has become possible to acquire fMRI data with sub-millimetre resolution, enabling probing the laminar and columnar circuitry in humans. Currently, laminar BOLD responses are not directly observed but inferred via data analysis, due to coarse spatial resolution of fMRI (e.g. 0.7-0.8 mm isotropic) relative to the extent of histological laminae. In this study, we introduce a novel approach for mapping the cortical BOLD response at the spatial scale of cortical layers and columns at 7T (an unprecedented 0.1 mm, either in the laminar or columnar direction). We demonstrate experimentally and using simulations, the superiority of the novel approach compared to standard approaches for human laminar fMRI in terms of effective spatial resolution in either laminar or columnar direction. In addition, we provide evidence that the laminar BOLD signal profile is not homogeneous even over short patches of cortex. In summary, the proposed novel approach affords the ability to directly study the mesoscopic organization of the human cortex, thus, bridging the gap between human cognitive neuroscience and invasive animal studies.
Assuntos
Mapeamento Encefálico/métodos , Neuroimagem Funcional/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Córtex Visual/fisiologia , Adulto , Feminino , Humanos , MasculinoRESUMO
PURPOSE: To design, construct and validate radiofrequency (RF) transmit and receive phased array coils for high-resolution visual cortex imaging at 7 Tesla. METHODS: A 4 channel transmit and 16 channel receive array was constructed on a conformal polycarbonate former. Transmit field efficiency and homogeneity were simulated and validated, along with the Specific Absorption Rate, using [Formula: see text] mapping techniques and electromagnetic simulations. Receiver signal-to-noise ratio (SNR), temporal SNR (tSNR) across EPI time series, g-factors for accelerated imaging and noise correlations were evaluated and compared with a commercial 32 channel whole head coil. The performance of the coil was further evaluated with human subjects through functional MRI (fMRI) studies at standard and submillimeter resolutions of upto 0.8mm isotropic. RESULTS: The transmit and receive sections were characterized using bench tests and showed good interelement decoupling, preamplifier decoupling and sample loading. SNR for the 16 channel coil was â¼ 1.5 times that of the commercial coil in the human occipital lobe, and showed better g-factor values for accelerated imaging. fMRI tests conducted showed better response to Blood Oxygen Level Dependent (BOLD) activation, at resolutions of 1.2mm and 0.8mm isotropic. CONCLUSION: The 4 channel phased array transmit coil provides homogeneous excitation across the visual cortex, which, in combination with the dual row 16 channel receive array, makes for a valuable research tool for high resolution anatomical and functional imaging of the visual cortex at 7T.