Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 454(7204): 600-6, 2008 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-18615015

RESUMO

Switching between exploratory and defensive behaviour is fundamental to survival of many animals, but how this transition is achieved by specific neuronal circuits is not known. Here, using the converse behavioural states of fear extinction and its context-dependent renewal as a model in mice, we show that bi-directional transitions between states of high and low fear are triggered by a rapid switch in the balance of activity between two distinct populations of basal amygdala neurons. These two populations are integrated into discrete neuronal circuits differentially connected with the hippocampus and the medial prefrontal cortex. Targeted and reversible neuronal inactivation of the basal amygdala prevents behavioural changes without affecting memory or expression of behaviour. Our findings indicate that switching between distinct behavioural states can be triggered by selective activation of specific neuronal circuits integrating sensory and contextual information. These observations provide a new framework for understanding context-dependent changes of fear behaviour.


Assuntos
Medo/fisiologia , Neurônios/fisiologia , Tonsila do Cerebelo/citologia , Tonsila do Cerebelo/fisiologia , Animais , Condicionamento Psicológico , Extinção Psicológica , Reação de Congelamento Cataléptica/efeitos dos fármacos , Reação de Congelamento Cataléptica/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Muscimol/farmacologia , Vias Neurais , Neurônios/classificação
2.
Nat Commun ; 9(1): 1750, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29717130

RESUMO

Optogenetics revolutionizes basic research in neuroscience and cell biology and bears potential for medical applications. We develop mutants leading to a unifying concept for the construction of various channelrhodopsins with fast closing kinetics. Due to different absorption maxima these channelrhodopsins allow fast neural photoactivation over the whole range of the visible spectrum. We focus our functional analysis on the fast-switching, red light-activated Chrimson variants, because red light has lower light scattering and marginal phototoxicity in tissues. We show paradigmatically for neurons of the cerebral cortex and the auditory nerve that the fast Chrimson mutants enable neural stimulation with firing frequencies of several hundred Hz. They drive spiking at high rates and temporal fidelity with low thresholds for stimulus intensity and duration. Optical cochlear implants restore auditory nerve activity in deaf mice. This demonstrates that the mutants facilitate neuroscience research and future medical applications such as hearing restoration.


Assuntos
Potenciais de Ação , Vias Auditivas/fisiologia , Neurônios/fisiologia , Optogenética/métodos , Animais , Cálcio/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Audição/fisiologia , Humanos , Camundongos , Mutação , Técnicas de Patch-Clamp , Permeabilidade , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Xenopus laevis
3.
Curr Biol ; 27(4): 549-555, 2017 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-28190729

RESUMO

The ability to plan and execute appropriately timed responses to external stimuli is based on a well-orchestrated balance between movement initiation and inhibition. In impulse control disorders involving the prefrontal cortex (PFC) [1], this balance is disturbed, emphasizing the critical role that PFC plays in appropriately timing actions [2-4]. Here, we employed optogenetic and electrophysiological techniques to systematically analyze the functional role of five key subareas of the rat medial PFC (mPFC) and orbitofrontal cortex (OFC) in action control [5-9]. Inactivation of mPFC subareas induced drastic changes in performance, namely an increase (prelimbic cortex, PL) or decrease (infralimbic cortex, IL) of premature responses. Additionally, electrophysiology revealed a significant decrease in neuronal activity of a PL subpopulation prior to premature responses. In contrast, inhibition of OFC subareas (mainly the ventral OFC, i.e., VO) significantly impaired the ability to respond rapidly after external cues. Consistent with these findings, mPFC activity during response preparation predicted trial outcomes and reaction times significantly better than OFC activity. These data support the concept of opposing roles of IL and PL in directing proactive behavior and argue for an involvement of OFC in predominantly reactive movement control. By attributing defined roles to rodent PFC sections, this study contributes to a deeper understanding of the functional heterogeneity of this brain area and thus may guide medically relevant studies of PFC-associated impulse control disorders in this animal model for neural disorders [10-12].


Assuntos
Córtex Pré-Frontal/fisiologia , Desempenho Psicomotor/fisiologia , Tempo de Reação/fisiologia , Animais , Fenômenos Eletrofisiológicos , Masculino , Optogenética , Ratos , Ratos Sprague-Dawley
4.
Neuron ; 81(2): 428-37, 2014 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-24462103

RESUMO

Memories are acquired and encoded within large-scale neuronal networks spanning different brain areas. The anatomical and functional specificity of such long-range interactions and their role in learning is poorly understood. The amygdala and the medial prefrontal cortex (mPFC) are interconnected brain structures involved in the extinction of conditioned fear. Here, we show that a defined subpopulation of basal amygdala (BA) projection neurons targeting the prelimbic (PL) subdivision of mPFC is active during states of high fear, whereas BA neurons targeting the infralimbic (IL) subdivision are recruited, and exhibit cell-type-specific plasticity, during fear extinction. Pathway-specific optogenetic manipulations demonstrate that the activity balance between pathways is causally involved in fear extinction. Together, our findings demonstrate that, although intermingled locally, long-range connectivity defines distinct subpopulations of amygdala projection neurons and indicate that the formation of long-term extinction memories depends on the balance of activity between two defined amygdala-prefrontal pathways.


Assuntos
Tonsila do Cerebelo/citologia , Vias Neurais/fisiologia , Neurônios/fisiologia , Estimulação Acústica/efeitos adversos , Potenciais de Ação/genética , Potenciais de Ação/fisiologia , Análise de Variância , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fenômenos Biofísicos/efeitos dos fármacos , Fenômenos Biofísicos/fisiologia , Biofísica , Contagem de Células , Channelrhodopsins , Condicionamento Clássico , Venenos Elapídicos/farmacologia , Estimulação Elétrica , Extinção Psicológica , Medo/psicologia , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/metabolismo , Hipocampo/citologia , Hipocampo/fisiologia , Técnicas In Vitro , Luz , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos , Proteínas Oncogênicas v-fos/metabolismo , Optogenética , Técnicas de Patch-Clamp , Peptídeos/farmacologia , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA