Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 480: 116747, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37935250

RESUMO

The aryl hydrocarbon receptor (AHR) is a highly conserved pleiotropic transcription factor that senses environmental pollutants, microbial products, and endogenous ligands. The transcriptional targets of AHR include phase I and phase II detoxification enzymes, as well as numerous signaling molecules that affect a wide spectrum of biological and biochemical processes in a manner of cellular context-dependent. In this review, we systematically assess the latest discoveries of AHR in carcinogenesis with an emphasis on its tumor suppressor-like property that represses the expression of genes in oncogenic signaling pathways. Additionally, we outline recent progress in our studies on the interaction among AHR, TGFb and NRF2 in cellular responses to arsenic and malignant transformation. Our findings indicate that AHR antagonized TGFb and NRF2, suggesting that AHR could serve as a potential tumor suppressor in arsenic-induced carcinogenesis. Notably, while AHR can exhibit both oncogenic and tumor-suppressive properties in cancer development and the generation of the cancer stem-like cells (CSCs), the tumor suppressor-like effect of AHR warrants further extensive exploration for the prevention and clinical treatment of cancers.


Assuntos
Arsênio , Receptores de Hidrocarboneto Arílico , Humanos , Receptores de Hidrocarboneto Arílico/metabolismo , Arsênio/toxicidade , Fator 2 Relacionado a NF-E2/metabolismo , Transformação Celular Neoplásica/metabolismo , Carcinogênese/induzido quimicamente , Carcinogênese/genética , Carcinogênese/metabolismo
2.
Semin Cancer Biol ; 76: 310-318, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33823236

RESUMO

Environmental exposure to arsenic, a well-established carcinogen linked to a number of human cancers, is a public health concern in many areas of the world. Despite extensive studies on the molecular mechanisms of arsenic-induced carcinogenesis, how initial cellular responses, such as activation of stress kinases and the generation of reactive oxygen species, converge to affect the transcriptional and/or epigenetic reprogramming required for the malignant transformation of normal cells or normal stem cells remains to be elucidated. In this review, we discuss some recent discoveries showing how the transcription factor NRF2 and an epigenetic regulator, MDIG, contribute to the arsenic-induced generation of cancer stem-like cells (CSCs) as determined by applying CRISPR-Cas9 gene editing and chromosome immunoprecipitation followed by DNA sequencing (ChIP-seq).


Assuntos
Arsênio/efeitos adversos , Transformação Celular Neoplásica/induzido quimicamente , Epigênese Genética/fisiologia , Histona Desmetilases/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Células-Tronco Neoplásicas/patologia , Animais , Dioxigenases/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Transcrição Gênica
3.
J Cell Biochem ; 123(7): 1183-1196, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35578735

RESUMO

Human Cripto-1 is a member of the epidermal growth factor (EGF)-Cripto-FRL-1-Cryptic (CFC) family family and performs critical roles in cancer and various pathological and developmental processes. Recently we demonstrated that a soluble form of Cripto-1 suppresses the self-renewal and enhances the differentiation of cancer stem cells (CSCs). A functional form of soluble Cripto-1 was found to be difficult to obtain because of the 12 cysteine residues in the protein which impairs the folding process. Here, we optimized the protocol for a T7 expression system, purification from inclusion bodies under denatured conditions refolding of a His-tagged Cripto-1 protein. A concentrations of 0.2-0.4 mM isopropyl ß-D-1-thiogalactopyranoside (IPTG) at 37°C was found to be the optimal concentration for Cripto-1 expression while imidazole at 0.5 M was the optimum concentration to elute the Cripto-1 protein from a Ni-column in the smallest volume. Cation exchange column chromatography of the Cripto-1 protein in the presence of 8 M urea exhibited sufficient elution profile at pH 5, which was more efficient at recovery. The recovery of the protein reached to more than 26.6% after refolding with arginine. The purified Cripto-1 exhibited high affinity to the anti-ALK-4 antibody and suppressed sphere forming ability of CSCs at high dose and induced cell differentiation.


Assuntos
Neoplasias , Células-Tronco Neoplásicas , Diferenciação Celular , Fator de Crescimento Epidérmico/química , Fator de Crescimento Epidérmico/farmacologia , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Humanos , Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo
4.
Br J Cancer ; 127(2): 193-201, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35292758

RESUMO

The growth of cancer tissue is thought to be considered driven by a small subpopulation of cells, so-called cancer stem cells (CSCs). CSCs are located at the apex of a hierarchy in a cancer tissue with self-renewal, differentiation and tumorigenic potential that produce the progeny in the tissue. Although CSCs are generally believed to play a critical role in the growth, metastasis, and recurrence of cancers, the origin of CSCs remains to be reconsidered. We hypothesise that, chronic diseases, including obesity and diabetes, establish the cancer-inducing niche (CIN) that drives the undifferentiated/progenitor cells into CSCs, which then develop malignant tumours in vivo. In this context, a CIN could be traced to chronic inflammation that involves long-lasting tissue damage and repair after being exposed to factors such as cytokines and growth factors. This must be distinguished from the cancer microenvironment, which is responsible for cancer maintenance. The concept of a CIN is most important for cancer prevention as well as cancer therapy.


Assuntos
Neoplasias , Diferenciação Celular , Humanos , Inflamação/patologia , Neoplasias/patologia , Células-Tronco Neoplásicas/patologia , Microambiente Tumoral
5.
Cell Biochem Funct ; 40(3): 310-320, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35285948

RESUMO

Diphenyleneiodonium (DPI) has long been evaluated as an anticancer drug inhibiting NADPH oxidase, the IC50 in several cancer cell lines was reported 10 µM, which is too high for efficacy. In this study, we employed miPS-Huh7cmP cells, which we previously established as a cancer stem cell (CSC) model from induced pluripotent stem cells, to reevaluate the efficacy of DPI because CSCs are currently one of the main foci of therapeutic strategy to treat cancer, but generally considered resistant to chemotherapy. As a result, the conventional assay for the cell growth inhibition by DPI accounted for an IC50 at 712 nM that was not enough to define the effectiveness as an anticancer drug. Simultaneously, the wound-healing assay revealed an IC50 of approximately 500 nM. Comparatively, the IC50 values shown on sphere formation, colony formation, and tube formation assays were 5.52, 12, and 8.7 nM, respectively. However, these inhibitory effects were not observed by VAS2780, also a reputed NADPH oxidase inhibitor. It is noteworthy that these three assays are evaluating the characteristic of CSCs and are designed in the three-dimensional (3D) culture methods. We concluded that DPI could be a suitable candidate to target mitochondrial respiration in CSCs. We propose that the 3D culture assays are more efficient to screen anti-CSC drug candidates and better mimic tumor microenvironment when compared to the adherent monolayer of 2D culture system used for a conventional assay, such as cell growth inhibition and wound-healing assays.


Assuntos
Antineoplásicos , Células-Tronco Pluripotentes Induzidas , Neoplasias , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , NADPH Oxidases/metabolismo , Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Oniocompostos
6.
Adv Exp Med Biol ; 1393: 125-139, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36587305

RESUMO

Many tumors are resistant to conventional cancer therapies because a tumor is composed of heterogeneous cell population. Especially, subpopulation of cancer stem cells, which have self-renewal and differentiation properties and responsible for the tumor initiation, is generally considered resistant to chemo-, radio-, and immune therapy. Understanding the mechanism of drug resistance in cancer stem cells should lead to establish more effective therapeutic strategies. Actually, different molecular mechanisms are conceivable for cancer stem cells acquiring drug resistance. These mechanisms include not only cytoplasmic signaling pathways but also the intercellular communications in the tumor microenvironment. Recently, a great deal of successful reports challenged to elucidate the mechanisms of drug resistance and to develop novel treatments targeting cancer stem cells.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neoplasias , Humanos , Neoplasias/patologia , Transformação Celular Neoplásica/patologia , Diferenciação Celular , Células-Tronco Neoplásicas/patologia , Microambiente Tumoral
7.
Adv Exp Med Biol ; 1393: 83-101, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36587303

RESUMO

Cancer stem cells (CSCs) are small subpopulation sharing similar properties like normal stem such as self-renewal and differentiation potential to direct tumor growth. Last few years, scientists considered CSCs as the cause of phenotypic heterogeneity in diverse cancer types. Also, CSCs contribute to cancer metastasis and recurrence. The cellular and molecular regulators influence on the CSCs' phenotype changing their behaviors in different stages of cancer progression. CSC markers play significance roles in cancer diagnosis and characterization. We delineate the cross-talks between CSCs and the tumor microenvironment that supports their intrinsic properties including survival, stemness, quiescence and their cellular and molecular adaptation. An insight into the markers of CSCs specific to organs is described.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Neoplasias/patologia , Células-Tronco Neoplásicas/patologia , Diferenciação Celular , Fenótipo , Microambiente Tumoral/genética
8.
Biochem Biophys Res Commun ; 583: 49-55, 2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34735879

RESUMO

Cancer stem cells (CSCs) are responsible for cancer initiation, drug resistance, and aggressive tumor phenotypes. Our lab has established a novel method to induce CSCs from induced pluripotent stem (iPS) cells in a microenvironment mimicking chronic inflammation. The converted cells acquired CSC characteristics and developed malignant tumors. Recently, we demonstrated that nonmutagenic chemical inhibitors accelerated the conversion of mouse iPS (miPS) cells into CSCs. Here, we investigated the effects of AZD-6244, a MEK1/2-specific inhibitor, on the conversion of iPS cells into CSCs. The miPS cells were cultured for one week in the presence of the conditioned medium (CM) of Lewis lung carcinoma (LLC) cells and AZD-6244, PD0325901, a pan-MEK inhibitor, or GDC-0879, a B-Raf inhibitor. As a result, AZD-6244 enhanced the conversion of iPS cells into CSCs and upregulated AKT phosphorylation as same as GDC-0879 and PD0325901. The converted cells maintained their self-renewal ability and stemness gene expression. The expression of the CSC markers CD24, CD44 and CD133 was higher in the cells cultured with MAPK inhibitors than in those cultured without MAPK inhibitors. Moreover, converted cells gained migration and invasion abilities assessed by in vitro assays. Therefore, the inhibition of MEK1/2 was found to be critical for the conversion of normal stem cells into CSCs in the tumor-inducing microenvironment.

9.
Cell Biol Int ; 45(4): 749-756, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33274828

RESUMO

Angiogenesis is generally involved in tumor growth and metastasis. Cancer stem cells (CSCs) are considered to facilitate the angiogenesis. Therefore, CSCs could be the effective targets to stop angiogenesis. Recently, our group successfully generated CSC models from induced pluripotent stem cells (iPSCs) in the presence of conditioned medium derived from cancer derived cells. These novel model CSCs has been characterized by highly tumorigenic, angiogenic and metastatic potentials in vivo. The angiogenic potential of CSCs has been explained by the expression of both angiogenic factors and their receptors implying the angiogenesis in autocrine manner. In this protocol we optimized the method to evaluate tumor angiogenesis with the CSC model, which was described effective to assess sorafenib as an antiangiogenic drug, on chick chorioallantoic membrane (CAM) assay. Our results demonstrate that CSCs developed from iPSCs and CAM assay are a robust and cost-effective tool to evaluate tumor angiogenesis with CSCs. Collectively, CSCs in CAM assay could serve as a very useful model for the screening of potential therapeutic agents targeting tumor angiogenesis.


Assuntos
Neoplasias , Neovascularização Patológica , Sorafenibe/farmacologia , Inibidores da Angiogênese/farmacologia , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Embrião de Galinha , Membrana Corioalantoide/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Células-Tronco Neoplásicas
10.
Cell Biochem Funct ; 39(7): 896-907, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34268768

RESUMO

Metformin exhibits anti-cancer activities in various types of tumours while it is prescribed as the first-line drug for type 2 diabetes. Since new evidence has recently suggested that metformin could target cancer stem cells (CSCs) and prevent their recurrence, repositioning of metformin could be considered as a candidate for anti-CSC agent. In this study, we assessed the effect of metformin on the cancer stem cells developed from induced pluripotent stem cells. As the result, metformin significantly suppressed the self-renewal ability of CSCs when assessed by 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and cell counting methods exhibiting the IC50 as approximately 20 mM, which suppressed tube formation by CSCs on Matrigel reducing the angiogenic potential of CSCs. Cell cycle analysis showed that metformin reduced the percentage of cells in the S phase increasing the percentage of cells in G0/G1 phase. Moreover, the tumorigenicity of CSCs was found to be attenuated when the cells were injected with metformin. From these results, we concluded that metformin could be promising for targeted therapy by repositioning the widely available drugs with safety. SIGNIFICANCE OF THE STUDY: Metformin could target CSCs and prevent their recurrence, repositioning of metformin could be considered as a candidate for the anti-CSC agent. In this paper, we assessed the effect of metformin on the CSCs developed from induced pluripotent stem cells. Here, we show that metformin suppresses the self-renewal and tube formation abilities of CSCs. We also show that metformin reduces the percentage of cells in the S phase increasing the percentage of cells in G0/G1 phase. Moreover, the tumorigenicity of CSCs was found to be attenuated when grafted in vivo after treatment with metformin.


Assuntos
Antineoplásicos/farmacologia , Autorrenovação Celular/efeitos dos fármacos , Metformina/farmacologia , Modelos Biológicos , Células-Tronco Pluripotentes/citologia , Animais , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células Tumorais Cultivadas
11.
Br J Cancer ; 122(9): 1378-1390, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32203212

RESUMO

BACKGROUND: Liver cancer is the second most common cause of cancer-related death. Every type of tumours including liver cancer contains cancer stem cells (CSCs). To date, the molecular mechanism regulating the development of liver CSCs remains unknown. METHODS: In this study, we tried to generate a new model of liver CSCs by converting mouse induced pluripotent stem cells (miPSCs) with hepatocellular carcinoma (HCC) cell line Huh7 cells conditioned medium (CM). miPSCs treated with CM were injected into the liver of BALB/c nude mice. The developed tumours were then excised and analysed. RESULTS: The primary cultured cells from the malignant tumour possessed self-renewal capacity, differentiation potential and tumorigenicity in vivo, which were found rich in liver cancer-associated markers as well as CSC markers. CONCLUSIONS: We established a model of liver CSCs converting from miPS and showed different stages of stemness during conversion process. Our CSC model will be important to assess the molecular mechanisms necessary to develop liver CSCs and could help in defeating liver cancer.


Assuntos
Carcinogênese/efeitos dos fármacos , Carcinoma Hepatocelular/genética , Meios de Cultivo Condicionados/farmacologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Neoplasias Hepáticas/genética , Animais , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/patologia , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Fígado/efeitos dos fármacos , Fígado/patologia , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos BALB C , Células-Tronco Neoplásicas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
12.
Int J Mol Sci ; 20(5)2019 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-30818864

RESUMO

Paclitaxel (PTX) is one of the front-line drugs approved for the treatment of ovarian cancer. However, the application of PTX is limited due to the significant hydrophobicity and poor pharmacokinetics. We previously reported target-directed liposomes carrying tumor-selective conjugated antibody and encapsulated glycosylated PTX (gPTX-L) which successfully overcome the PTX limitation. The tubulin stabilizing activity of gPTX was equivalent to that of PTX while the cytotoxic activity of gPTX was reduced. In human ovarian cancer cell lines, SK-OV-3 and OVK18, the concentration at which cell growth was inhibited by 50% (IC50) for gPTX range from 15⁻20 nM, which was sensitive enough to address gPTX-L with tumor-selective antibody coupling for ovarian cancer therapy. The cell membrane receptor CD44 is associated with cancer progression and has been recognized as a cancer stem cell marker including ovarian cancer, becoming a suitable candidate to be targeted by gPTX-L therapy. In this study, gPTX-loading liposomes conjugated with anti-CD44 antibody (gPTX-IL) were assessed for the efficacy of targeting CD44-positive ovarian cancer cells. We successfully encapsulated gPTX into liposomes with the loading efficiency (LE) more than 80% in both of gPTX-L and gPTX-IL with a diameter of approximately 100 nm with efficacy of enhanced cytotoxicity in vitro and of convenient treatment in vivo. As the result, gPTX-IL efficiently suppressed tumor growth in vivo. Therefore gPTX-IL could be a promising formulation for effective ovarian cancer therapies.


Assuntos
Receptores de Hialuronatos/metabolismo , Terapia de Alvo Molecular , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Paclitaxel/uso terapêutico , Anticorpos Monoclonais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Glicosilação , Humanos , Lipossomos/ultraestrutura , Neoplasias Ovarianas/patologia , Paclitaxel/farmacologia
13.
Int J Mol Sci ; 19(4)2018 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-29690614

RESUMO

T cell-deficient mice such as nude mice are often used to generate tumor xenograft for the development of anticancer agents. However, the functionality of the other immune cells including macrophages, dendritic cells (DCs), and myeloid-derived suppressor cells (MDSCs) in the xenograft are largely unknown. Macrophages and dendritic cells (DCs) acquire functionally distinct properties in response to various environmental stimuli; the interaction of these cells with MDSCs in tumor microenvironments regulates cancer progression. Nude mice are less likely to reject human cancer cells because of major histocompatibility complex (MHC) mismatches. The tumor microenvironment in a xenograft, comprising human and mouse cells, exhibits more complex bidirectional signaling and function than that of allograft. Here, we evaluated the differences of myeloid cells between them. Plasma interferon-γ and interleukin-18 concentrations in the xenograft tumor model after lipopolysaccharide (LPS) administration were significantly higher than those in the allograft tumor model. MHC class I, II, and CD80 expression levels were increased in CD11b⁺ and MDSC populations after LPS administration in the spleen of a xenograft tumor model but not in that of an allograft tumor model. Additionally, the number of CD80- and mannose receptor C type 1 (MRC1)-expressing cells was decreased upon LPS administration in the tumor of the xenograft tumor. These results suggest that functions of macrophages and DCs are sustained in the xenograft, whereas their functions in response to LPS were suppressed in the allograft. The findings will encourage the consideration of the effects of myeloid cells in the xenograft for drug development.


Assuntos
Citocinas/metabolismo , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Aloenxertos , Animais , Linhagem Celular Tumoral , Feminino , Citometria de Fluxo , Células HT29 , Humanos , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Int J Mol Sci ; 19(11)2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30373174

RESUMO

Cripto-1 is a glycophosphatidylinositol (GPI) anchored signaling protein of epidermal growth factor (EGF)-Cripto-1-FRL1-Cryptic (CFC) family and plays a significant role in the early developmental stages and in the different types of cancer cells, epithelial to mesenchymal transition and tumor angiogenesis. Previously, we have developed cancer stem cells (miPS-LLCcm) from mouse iPSCs by culturing them in the presence of conditioned medium of Lewis Lung Carcinoma (LLC) cells for four weeks. Nodal and Cripto-1 were confirmed to be expressed in miPS-LLCcm cells by quantitative reverse transcription PCR (rt-qPCR) implying that Cr-1 was required in maintaining stemness. To investigate the biological effect of adding exogenous soluble CR-1 to the cancer stem cells, we have prepared a C-terminally truncated soluble form of recombinant human CR-1 protein (rhsfCR-1), in which the GPI anchored moiety was removed by substitution of a stop codon through site-directed mutagenesis. rhsfCR-1 effectively suppressed the proliferation and sphere forming ability of miPS-LLCcm cells in a dose-dependent manner in the range of 0 to 5 µg/mL, due to the suppression of Nodal-Cripto-1/ALK4/Smad2 signaling pathway. Frequency of sphere-forming cells was dropped from 1/40 to 1/69 by rhsfCR-1 at 1 µg/mL. Moreover, rhsfCR-1 in the range of 0 to 1 µg/mL also limited the differentiation of miPS-LLCcm cells into vascular endothelial cells probably due to the suppression of self-renewal, which should reduce the number of cells with stemness property. As demonstrated by a soluble form of exogenous Cripto-1 in this study, the efficient blockade would be an attractive way to study Cripto-1 dependent cancer stem cell properties for therapeutic application.


Assuntos
Autorrenovação Celular , Proteínas Ligadas por GPI/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/citologia , Animais , Diferenciação Celular , Linhagem Celular , Humanos , Camundongos , Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Proteína Smad2/metabolismo
15.
Int J Mol Sci ; 19(3)2018 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-29495404

RESUMO

We recently have established a successful xenograft model of human glioblastoma cells by enriching hyaluronic acid-dependent spheroid-forming populations termed U251MG-P1 cells from U251MG cells. Since U251MG-P1 cells have been confirmed to express CD44 along with principal stemness marker genes, OCT3/4, SOX2, KLF4 and Nanog, this CD44 expressing population appeared to majorly consist of undifferentiated cells. Evaluating the sensitivity to anti-cancer agents, we found U251MG-P1 cells were sensitive to doxorubicin with IC50 at 200 nM. Although doxorubicin has serious side-effects, establishment of an efficient therapy targeting undifferentiated glioblastoma cell population is necessary. We previously designed a chlorotoxin peptide fused to human IgG Fc region without hinge sequence (M-CTX-Fc), which exhibited a stronger growth inhibitory effect on the glioblastoma cell line A172 than an original chlorotoxin peptide. Combining these results together, we designed M-CTX-Fc conjugated liposomes encapsulating doxorubicin and used U251MG-P1 cells as the target model in this study. The liposome modified with M-CTX-Fc was designed with a diameter of approximately 100-150 nm and showed high encapsulation efficiency, adequate loading capacity of anticancer drug, enhanced antitumor effects demonstrating increasing uptake into the cells in vitro; M-CTX-Fc-L-Dox shows great promise in its ability to suppress tumor growth in vivo and it could serve as a template for targeted delivery of other therapeutics.


Assuntos
Doxorrubicina/análogos & derivados , Glioblastoma/genética , Receptores de Hialuronatos/genética , Proteínas Recombinantes de Fusão , Venenos de Escorpião/farmacologia , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Doxorrubicina/farmacologia , Feminino , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Receptores de Hialuronatos/metabolismo , Fragmentos Fc das Imunoglobulinas , Imunoglobulina G , Concentração Inibidora 50 , Fator 4 Semelhante a Kruppel , Metaloproteinase 2 da Matriz , Camundongos , Polietilenoglicóis/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
16.
J Immunol ; 194(12): 5681-91, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25926676

RESUMO

Dendritic cell immunoreceptor (DCIR) is a C-type lectin receptor mainly expressed in DCs. Dcir (-/-) mice spontaneously develop autoimmune enthesitis and ankylosis accompanied by fibrocartilage proliferation and ectopic ossification. However, the mechanisms of new bone/cartilage formation in Dcir (-/-) mice remain to be elucidated. In this study, we show that DCIR maintains bone homeostasis by regulating IFN-γ production under pathophysiological conditions. DCIR deficiency increased bone volume in femurs and caused aberrant ossification in joints, whereas these symptoms were abolished in Rag2(-/-)Dcir(-/-) mice. IFN-γ-producing T cells accumulated in lymph nodes and joints of Dcir(-/-) mice, and purified Dcir(-/-) DCs enhanced IFN-γ(+) T cell differentiation. The ankylotic changes and bone volume increase were suppressed in the absence of IFN-γ. Thus, IFN-γ is a positive chondrogenic and osteoblastogenic factor, and DCIR is a crucial regulator of bone metabolism; consequently, both factors are potential targets for therapies directed against bone metabolic diseases.


Assuntos
Osso e Ossos/metabolismo , Homeostase/genética , Homeostase/imunologia , Interferon gama/biossíntese , Lectinas Tipo C/genética , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Fatores Etários , Animais , Anquilose/diagnóstico por imagem , Anquilose/genética , Anquilose/imunologia , Anquilose/patologia , Densidade Óssea/genética , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/patologia , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Condrócitos/citologia , Condrócitos/metabolismo , Proteínas de Ligação a DNA/deficiência , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Masculino , Camundongos , Camundongos Knockout , Osteoblastos/citologia , Osteoblastos/metabolismo , Subpopulações de Linfócitos T/citologia , Microtomografia por Raio-X
17.
Biochem Biophys Res Commun ; 443(1): 42-8, 2014 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-24269820

RESUMO

Rheumatoid arthritis (RA) is an autoimmune inflammatory disease exhibited most commonly in joints. We found that the expression of C1qtnf3, which encodes C1q/TNF-related protein 3 (CTRP3), was highly increased in two mouse RA models with different etiology. To elucidate the pathogenic roles of CTRP3 in the development of arthritis, we generated C1qtnf3(-/-) mice and examined the development of collagen-induced arthritis in these mice. We found that the incidence and severity score was higher in C1qtnf3(-/-) mice compared with wild-type (WT) mice. Histopathology of the joints was also more severe in C1qtnf3(-/-) mice. The levels of antibodies against type II collagen and pro-inflammatory cytokine mRNAs in C1qtnf3(-/-) mice were higher than WT mice. These observations indicate that CTRP3 plays an important role in the development of autoimmune arthritis, suggesting CTRP3 as a possible medicine to treat RA.


Assuntos
Adipocinas/fisiologia , Artrite Experimental/genética , Artrite Reumatoide/genética , Adipocinas/genética , Sequência de Aminoácidos , Animais , Artrite Experimental/patologia , Artrite Reumatoide/patologia , Autoimunidade , Linfócitos B/imunologia , Colágeno Tipo II/imunologia , Humanos , Articulações/imunologia , Articulações/patologia , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular
18.
Environ Pollut ; 345: 123396, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38295932

RESUMO

As one of the first identified oncogenic microRNAs, the precise details concerning the transcriptional regulation and function of microRNA-21 (miR-21) are still not completely established. The miR-21 gene is situated on chromosome 17q23.2, positioned at the 3'-UTR of the gene that encodes vacuole membrane protein-1 (VMP1). In this current study, we presented evidence indicating that miR-21 possesses its own gene promoter, which can be found in the intron 10 of the VMP1 gene. Chromatin immunoprecipitation followed by global DNA sequencing (ChIP-seq) revealed the presence of a broad H3K4me3 peak spanning the entire gene body of the primary miR-21 and the existence of super-enhancer clusters in the close proximity to both the miR-21 gene promoter and the transcription termination site in arsenic (As3+)-induced cancer stem-like cells (CSCs) and human induced pluripotent stem cells (hiPSCs). In non-transformed human bronchial epithelial cells (BEAS-2B), As3+ treatment enhanced Nrf2 binding to both the host gene VMP1 of miR-21 and the miR-21 gene. Knockout of Nrf2 inhibited both the basal and As3+-induced expressions of miR-21. Furthermore, the As3+-enhanced Nrf2 peaks in ChIP-seq fully overlap with these super-enhancers enriched with H3K4me1 and H3K27ac in the miR-21 gene, suggesting that Nrf2 may coordinate with other transcription factors through the super-enhancers to regulate the expression of miR-21 in cellular response to As3+. These findings demonstrate the unique genetic and epigenetic characteristics of miR-21 and may provide insights into understanding the novel mechanisms linking environmental As3+ exposure and human cancers.


Assuntos
Arsênio , Células-Tronco Pluripotentes Induzidas , MicroRNAs , Humanos , Arsênio/toxicidade , Arsênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Epigenômica , Epigênese Genética , Proteínas de Membrana
19.
Cytotechnology ; 75(3): 243-253, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37181678

RESUMO

Induced pluripotent stem cells (iPSCs) are useful tools for modeling diseases and developing personalized medicine. We have been developing cancer stem cells (CSCs) from iPSCs with conditioned medium (CM) of cancer-derived cells as the mimicry of the microenvironment of tumor initiation. However, the conversion of human iPSCs has not always been efficient with only CM. In this study, human iPSCs reprogrammed from monocytes of healthy volunteers were cultured in a media containing 50% of the CM from human pancreatic cancer derived BxPC3 cells supplemented with a MEK inhibitor (AZD6244) and a GSK-3α/ß inhibitor (CHIR99021). The survived cells were assessed for the characteristics of CSCs in vitro and in vivo. As a result, they exhibited CSC phenotypes of self-renewal, differentiation, and malignant tumorigenicity. Primary culture of the malignant tumors of the converted cells exhibited the elevated expression of CSC related genes CD44, CD24 and EPCAM maintaining the expression of stemness genes. In conclusion, the inhibition of GSK-3α/ß and MEK and the microenvironment of tumor initiation mimicked by the CM can convert human normal stem cells into CSCs. This study could provide insights into establishing potentially novel personalized cancer models which could help investigate the tumor initiation and screening of personalized therapies on CSCs. Supplementary Information: The online version contains supplementary material available at 10.1007/s10616-023-00575-1.

20.
Biomaterials ; 301: 122249, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37506511

RESUMO

The heterogeneous cell population in the stromal microenvironment is considered to be attributed to the multiple sources from which the cells originate. Tumor associated myoepithelial cells (TAMEs) are one of the most important populations in the tumor microenvironment (TME) especially in breast cancer. On the other hand, cancer stem cells (CSCs) have previously been described to be the origin of tumor-associated cellular components in the TME. We prepared a cancer stem cell model converting mouse-induced pluripotent stem cells (miPSCs) in the presence of conditioned medium of breast cancer cell line MDA-MB-231 cells. The converted cells developed tumors progressing into invasive carcinoma with ductal carcinoma in situ (DCIS) like structure when transplanted into mouse mammary fat pads. The primary cultured cells from the tumor further exhibited markers of CSC such as Sox2, Oct3/4, - CD133 and EpCAM, and mammary gland-related TAME markers such as α-smooth muscle actin, cytokeratin 8, whey acidic protein, prolactin receptor and progesterone receptor as well. These results indicated that the CSCs could be an origin of TAMEs contributing to mammary gland epithelial cell differentiation and the progression to invasive carcinoma during tumor development. The gene expression profiles confirmed the enhanced signaling pathways of PI3K/AKT and MAPK, which have been demonstrated to be enriched in the CSC models, together with the estrogen receptor signaling which was peculiar to mammary gland-derived character.


Assuntos
Carcinoma Intraductal não Infiltrante , Camundongos , Animais , Carcinoma Intraductal não Infiltrante/patologia , Microambiente Tumoral , Fosfatidilinositol 3-Quinases , Biomarcadores Tumorais , Células-Tronco Neoplásicas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA