Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chem Soc Rev ; 50(6): 3990-4030, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33576756

RESUMO

The advent of nanotechnology has hurtled the discovery and development of nanostructured materials with stellar chemical and physical functionalities in a bid to address issues in energy, environment, telecommunications and healthcare. In this quest, a class of two-dimensional layered materials consisting of alkali or coinage metal atoms sandwiched between slabs exclusively made of transition metal and chalcogen (or pnictogen) atoms arranged in a honeycomb fashion have emerged as materials exhibiting fascinatingly rich crystal chemistry, high-voltage electrochemistry, fast cation diffusion besides playing host to varied exotic electromagnetic and topological phenomena. Currently, with a niche application in energy storage as high-voltage materials, this class of honeycomb layered oxides serves as ideal pedagogical exemplars of the innumerable capabilities of nanomaterials drawing immense interest in multiple fields ranging from materials science, solid-state chemistry, electrochemistry and condensed matter physics. In this review, we delineate the relevant chemistry and physics of honeycomb layered oxides, and discuss their functionalities for tunable electrochemistry, superfast ionic conduction, electromagnetism and topology. Moreover, we elucidate the unexplored albeit vastly promising crystal chemistry space whilst outlining effective ways to identify regions within this compositional space, particularly where interesting electromagnetic and topological properties could be lurking within the aforementioned alkali and coinage-metal honeycomb layered oxide structures. We conclude by pointing towards possible future research directions, particularly the prospective realisation of Kitaev-Heisenberg-Dzyaloshinskii-Moriya interactions with single crystals and Floquet theory in closely-related honeycomb layered oxide materials.

2.
Adv Sci (Weinh) ; 10(6): e2204672, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36575151

RESUMO

Honeycomb-layered oxides with monovalent or divalent, monolayered cationic lattices generally exhibit myriad crystalline features encompassing rich electrochemistry, geometries, and disorders, which particularly places them as attractive material candidates for next-generation energy storage applications. Herein, global honeycomb-layered oxide compositions, Ag2 M2 TeO6 ( M = Ni , Mg , etc $M = \rm Ni, Mg, etc$ .) exhibiting Ag $\rm Ag$ atom bilayers with sub-valent states within Ag-rich crystalline domains of Ag6 M2 TeO6 and Ag $\rm Ag$ -deficient domains of Ag 2 - x Ni 2 TeO 6 ${\rm Ag}_{2 - x}\rm Ni_2TeO_6$ ( 0 < x < 2 $0 < x < 2$ ). The Ag $\rm Ag$ -rich material characterized by aberration-corrected transmission electron microscopy reveals local atomic structural disorders characterized by aperiodic stacking and incoherency in the bilayer arrangement of Ag $\rm Ag$ atoms. Meanwhile, the global material not only displays high ionic conductivity but also manifests oxygen-hole electrochemistry during silver-ion extraction. Within the Ag $\rm Ag$ -rich domains, the bilayered structure, argentophilic interactions therein and the expected Ag $\rm Ag$ sub-valent states ( 1 / 2 + , 2 / 3 + $1/2+, 2/3+$ , etc.) are theoretically understood via spontaneous symmetry breaking of SU(2)× U(1) gauge symmetry interactions amongst 3 degenerate mass-less chiral fermion states, justified by electron occupancy of silver 4 d z 2 $4d_{z^2}$ and 5s orbitals on a bifurcated honeycomb lattice. This implies that bilayered frameworks have research applications that go beyond the confines of energy storage.

3.
Chem Commun (Camb) ; 58(10): 1518-1521, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34935787

RESUMO

Promising sulfurized polyethylene glycol (SPEG) composite cathodes with a high-rate capability over 3000 mA g-1 at 393 K are fabricated for Al metal anode rechargeable batteries with a 61.0-26.0-13.0 mol% AlCl3-NaCl-KCl inorganic ionic liquid electrolyte. The combination of the SPEG composite cathodes and chloroaluminate inorganic IL can readily enhance the performance of the Al-S batteries, e.g., discharge capacity and cycle stability.

4.
Nat Commun ; 12(1): 4660, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34341351

RESUMO

Honeycomb layered oxides constitute an emerging class of materials that show interesting physicochemical and electrochemical properties. However, the development of these materials is still limited. Here, we report the combined use of alkali atoms (Na and K) to produce a mixed-alkali honeycomb layered oxide material, namely, NaKNi2TeO6. Via transmission electron microscopy measurements, we reveal the local atomic structural disorders characterised by aperiodic stacking and incoherency in the alternating arrangement of Na and K atoms. We also investigate the possibility of mixed electrochemical transport and storage of Na+ and K+ ions in NaKNi2TeO6. In particular, we report an average discharge cell voltage of about 4 V and a specific capacity of around 80 mAh g-1 at low specific currents (i.e., < 10 mA g-1) when a NaKNi2TeO6-based positive electrode is combined with a room-temperature NaK liquid alloy negative electrode using an ionic liquid-based electrolyte solution. These results represent a step towards the use of tailored cathode active materials for "dendrite-free" electrochemical energy storage systems exploiting room-temperature liquid alkali metal alloy materials.

5.
Sci Rep ; 10(1): 16918, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33037301

RESUMO

Designing a high-capacity positive electrode material is critical for the advancement of lithium-ion batteries. Sulfurized polyethylene glycol (SPEG), containing ca. 61 wt% of sulfur, is a promising positive electrode material that exhibits a large initial discharge capacity of more than 800 mAh g-1. In this study, we present the local structure and electrochemical performances of SPEG. A high-energy X-ray total scattering experiment revealed that sulfur in SPEG is predominantly fragmented and bound to carbon atoms. The changes in the physicochemical properties of SPEG due to heat treatment with nitrogen gas at various temperatures were investigated using thermogravimetric analysis, Raman spectroscopy, X-ray absorption near edge structure, and extended X-ray absorption fine structure. Comparing the electrochemical performances of SPEG after heat treatment at various temperatures, it was found that S-S and C=S bonds contribute to the overall electrochemical performance of SPEG.

6.
Chem Commun (Camb) ; 55(7): 985-988, 2019 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30608071

RESUMO

The designing of high voltage cathode materials is critical for the advancement of potassium-ion (K-ion) battery. Herein, we present a new honeycomb framework P2-type K2/3Ni1/3Co1/3Te1/3O2 (or equivalently written as K2NiCoTeO6) which exhibits the highest voltage on record (beyond 4 V versus K+/K) for layered cathode materials. This work will allow for the further development of, particularly, high voltage layered cathodes for K-ion battery.

7.
ACS Appl Mater Interfaces ; 11(34): 30959-30967, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31390177

RESUMO

Conversion-type iron trifluoride (FeF3) has attracted considerable attention as a positive electrode material for lithium secondary batteries due to its high energy density and low cost. However, the conversion process through which FeF3 operates leads it to suffer from capacity degradation upon repeated cycling. To improve the cycle performance, in this study we investigated the degradation mechanism of conversion-type FeF3 electrode material. Bulk analyses of FeF3 upon cycling reveal incomplete oxidation to Fe3+ concomitant with the aggregation of LiF at the charged state. In addition, surface analyses of FeF3 reveal that a film covered the electrode surface after 10 cycles, which leads to a remarkable increase in resistance. We show that the choice of the electrolyte formulation is crucial in preventing the formation of the film on the electrode surface; thus, FeF3 shows better performance in an electrolyte comprising LiBF4 solute in cyclic carbonate solvents than in chain carbonate-containing LiPF6 as the electrolyte. This study underpins that a careful selection of solvent, rather than solute, is significantly essential to improve the cycle performance of the FeF3 electrode.

8.
Nat Commun ; 9(1): 3823, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30237549

RESUMO

Rechargeable potassium-ion batteries have been gaining traction as not only promising low-cost alternatives to lithium-ion technology, but also as high-voltage energy storage systems. However, their development and sustainability are plagued by the lack of suitable electrode materials capable of allowing the reversible insertion of the large potassium ions. Here, exploration of the database for potassium-based materials has led us to discover potassium ion conducting layered honeycomb frameworks. They show the capability of reversible insertion of potassium ions at high voltages (~4 V for K2Ni2TeO6) in stable ionic liquids based on potassium bis(trifluorosulfonyl) imide, and exhibit remarkable ionic conductivities e.g. ~0.01 mS cm-1 at 298 K and ~40 mS cm-1 at 573 K for K2Mg2TeO6. In addition to enlisting fast potassium ion conductors that can be utilised as solid electrolytes, these layered honeycomb frameworks deliver the highest voltages amongst layered cathodes, becoming prime candidates for the advancement of high-energy density potassium-ion batteries.

9.
Chem Commun (Camb) ; (28): 3526-8, 2005 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-16010312

RESUMO

A novel 3D metal-organic framework with predesigned cubic building blocks and 1D open channels exhibiting significant N2 adsorption has been synthesized and characterized by single crystal X-ray diffraction analysis.

10.
Sci Rep ; 4: 3650, 2014 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24413423

RESUMO

Using sodium, instead of lithium, in rechargeable batteries is a way to circumvent the lithium's resource problem. The challenge is to find an electrode material that can reversibly undergo redox reactions in a sodium-electrolyte at the desired electrochemical potential. We proved that indigo carmine (IC, 5,5'-indigodisulfonic acid sodium salt) can work as a positive-electrode material in not only a lithium-, but also a sodium-electrolyte. The discharge capacity of the IC-electrode was ~100 mAh g(-1) with a good cycle stability in either the Na or Li electrolyte, in which the average voltage was 1.8 V vs. Na(+)/Na and 2.2 V vs. Li(+)/Li, respectively. Two Na ions per IC are stored in the electrode during the discharge, testifying to the two-electron redox reaction. An X-ray diffraction analysis revealed a layer structure for the IC powder and the DFT calculation suggested the formation of a band-like structure in the crystal.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA