RESUMO
In view of the depletion of fossil fuel reserves and climatic effects of greenhouse gas emissions, Ni,Fe-containing carbon monoxide dehydrogenase (Ni-CODH) enzymes have attracted increasing interest in recent years for their capability to selectively catalyze the reversible reduction of CO2 to CO (CO2 + 2H+ + 2e- â CO + H2O). The possibility of converting the greenhouse gas CO2 into useful materials that can be used as synthetic building blocks or, remarkably, as carbon fuels makes Ni-CODH a very promising target for reverse-engineering studies. In this context, in order to provide insights into the chemical principles underlying the biological catalysis of CO2 activation and reduction, quantum mechanics calculations have been carried out in the framework of density functional theory (DFT) on different-sized models of the Ni-CODH active site. With the aim of uncovering which stereoelectronic properties of the active site (known as the C-cluster) are crucial for the efficient binding and release of CO2, different coordination modes of CO2 to different forms and redox states of the C-cluster have been investigated. The results obtained from this study highlight the key role of the protein environment in tuning the reactivity and the geometry of the C-cluster. In particular, the protonation state of His93 is found to be crucial for promoting the binding or the dissociation of CO2. The oxidation state of the C-cluster is also shown to be critical. CO2 binds to Cred2 according to a dissociative mechanism (i.e., CO2 binds to the C-cluster after the release of possible ligands from Feu) when His93 is doubly protonated. CO2 can also bind noncatalytically to Cred1 according to an associative mechanism (i.e., CO2 binding is preceded by the binding of H2O to Feu). Conversely, CO2 dissociates when His93 is singly protonated and the C-cluster is oxidized at least to the Cint redox state.
Assuntos
Aldeído Oxirredutases/química , Dióxido de Carbono/química , Teoria da Densidade Funcional , Ferro/química , Complexos Multienzimáticos/química , Níquel/química , Aldeído Oxirredutases/metabolismo , Sítios de Ligação , Dióxido de Carbono/metabolismo , Monóxido de Carbono/química , Monóxido de Carbono/metabolismo , Cristalografia por Raios X , Ferro/metabolismo , Modelos Moleculares , Estrutura Molecular , Complexos Multienzimáticos/metabolismo , Níquel/metabolismoRESUMO
Electrolyte gated organic transistors can operate as powerful ultrasensitive biosensors, and efforts are currently devoted to devising strategies for reducing the contribution of hardly avoidable, nonspecific interactions to their response, to ultimately harness selectivity in the detection process. We report a novel lab-on-a-chip device integrating a multigate electrolyte gated organic field-effect transistor (EGOFET) with a 6.5 µL microfluidics set up capable to provide an assessment of both the response reproducibility, by enabling measurement in triplicate, and of the device selectivity through the presence of an internal reference electrode. As proof-of-concept, we demonstrate the efficient operation of our pentacene based EGOFET sensing platform through the quantification of tumor necrosis factor alpha with a detection limit as low as 3 pM. Sensing of inflammatory cytokines, which also include TNFα, is of the outmost importance for monitoring a large number of diseases. The multiplexable organic electronic lab-on-chip provides a statistically solid, reliable, and selective response on microliters sample volumes on the minutes time scale, thus matching the relevant key-performance indicators required in point-of-care diagnostics.
Assuntos
Técnicas Biossensoriais/métodos , Fator de Necrose Tumoral alfa/análise , Aptâmeros de Peptídeos/química , Aptâmeros de Peptídeos/metabolismo , Infecções Bacterianas/metabolismo , Infecções Bacterianas/patologia , Técnicas Biossensoriais/instrumentação , Eletrodos , Ouro/química , Humanos , Dispositivos Lab-On-A-Chip , Limite de Detecção , Transistores Eletrônicos , Fator de Necrose Tumoral alfa/metabolismoRESUMO
Many enzymes that produce or transform small molecules such as O2, H2, and CO2 embed inorganic cofactors based on transition metals. Their active site, where the chemical reaction occurs, is buried in and protected by the protein matrix, and connected to the solvent in several ways: chains of redox cofactors mediate long-range electron transfer; static or dynamic tunnels guide the substrate, product and inhibitors; amino acids and water molecules transfer protons. The catalytic mechanism of these enzymes is therefore delocalized over the protein and involves many different steps, some of which determine the response of the enzyme under conditions of stress (extreme redox conditions, presence of inhibitors, light), the catalytic rates in the two directions of the reaction and their ratio (the "catalytic bias"). Understanding all the steps in the catalytic cycle, including those that occur on sites of the protein that are remote from the active site, requires a combination of biochemical, structural, spectroscopic, theoretical, and kinetic methods. Here we argue that kinetics should be used to the fullest extent, by extracting quantitative information from the comparison of data and kinetic models and by exploring the combination of experimental kinetics and theoretical chemistry. In studies of these catalytic mechanisms, direct electrochemistry, the technique which we use and contribute to develop, has become unescapable. It simply consists in monitoring the changes in activity of an enzyme that is wired to an electrode by recording an electric current. We have described kinetic models that can be used to make sense of these data and to learn about various aspects of the mechanism that are difficult to probe using more conventional methods: long-range electron transfer, diffusion along gas channels, redox-driven (in)activations, active site chemistry and photoreactivity under conditions of turnover. In this Account, we highlight a few results that illustrate our approach. We describe how electrochemistry can be used to monitor substrate and inhibitor diffusion along the gas channels of hydrogenases and we discuss how the kinetics of intramolecular diffusion relates to global properties such as resistance to oxygen and catalytic bias. The kinetics and/or thermodynamics of intramolecular electron transfer may also affect the catalytic bias, the catalytic potentials on either side of the equilibrium potential, and the overpotentials for catalysis (defined as the difference between the catalytic potentials and the open circuit potential). This is understood by modeling the shape of the steady-state catalytic response of the enzyme. Other determinants of the catalytic rate, such as domain motions, have been probed by examining the transient catalytic response recorded at fast scan rates. Last, we show that combining electrochemical investigations and MD, DFT, and TD-DFT calculations is an original way of probing the reactivity of the H-cluster of hydrogenase, in particular its reactions with CO, O2, and light. This approach contrasts with the usual strategy which aims at stabilizing species that are presumed to be catalytic intermediates, and determining their structure using spectroscopic or structural methods.
Assuntos
Técnicas Eletroquímicas , Hidrogenase/química , Sulfito Oxidase/química , Luz Solar , Biocatálise , Teoria da Densidade Funcional , Difusão , Eletrodos , Humanos , Hidrogenase/metabolismo , Simulação de Dinâmica Molecular , Sulfito Oxidase/metabolismoRESUMO
FeFe hydrogenases catalyze H2 oxidation and production using an "H-cluster", where two Fe ions are bound by an aza-dithiolate (adt) ligand. Various hypotheses have been proposed (by us and others) to explain that the enzyme reversibly inactivates under oxidizing, anaerobic conditions: intramolecular binding of the N atom of adt, formation of the so-called "Hox/inact" state or nonproductive binding of H2 to isomers of the H-cluster. Here, we show that none of the above explains the new finding that the anaerobic, oxidative, H2-dependent reversible inactivation is strictly dependent on the presence of Cl- or Br-. We provide experimental evidence that chloride uncompetitively inhibits the enzyme: it reversibly binds to catalytic intermediates of H2 oxidation (but not to the resting "Hox" state), after which oxidation locks the active site into a stable, saturated, inactive form, the structure of which is proposed here based on DFT calculations. The halides interact with the amine group of the H-cluster but do not directly bind to iron. It should be possible to stabilize the inhibited state in amounts compatible with spectroscopic investigations to explore further this unexpected reactivity of the H-cluster of hydrogenase.
RESUMO
FeFe hydrogenases catalyze H2 oxidation and formation at an inorganic active site (the "H-cluster"), which consists of a [Fe2(CO)3(CN)2(dithiomethylamine)] subcluster covalently attached to a Fe4S4 subcluster. This active site is photosensitive: visible light has been shown to induce the release of exogenous CO (a reversible inhibitor of the enzyme), shuffle the intrinsic CO ligands, and even destroy the H-cluster. These reactions must be understood because they may negatively impact the use of hydrogenase for the photoproduction of H2. Here, we explore in great detail the reactivity of the excited states of the H-cluster under catalytic conditions by examining, both experimentally and using TDDFT calculations, the simplest photochemical reaction: the binding and release of exogenous CO. A simple dyad model can be used to predict which excitations are active. This strategy could be used for probing other aspects of the photoreactivity of the H-cluster.
RESUMO
A framework for electrolyte-gated organic transistors (EGOTs) that unifies the view of interfacial capacitive coupling of electrolyte-gated organic field-effect transistors (EGOFETs) with the volumetric capacitive coupling in organic electrochemical transistors (OECTs) is proposed. The EGOT effective capacitance arises from in-series capacitances of the electrolyte/gate electrode and electrolyte/channel interfaces, and the chemical capacitance of the organic semiconductor channel whose weight with respect to the interfacial capacitance is modulated by the charge carrier density, hence by the gate voltage. The expression for chemical capacitance is derived from the DOS of the organic semiconductor, which it is assumed to exhibit exponential energy disorder in the HOMO-LUMO gap. The analytical expression of the EGOT current is assessed on experimental data and shown to accurately predict the shape of the whole transfer curve of an EGOT thus allowing to extract accurate values for the switch-on voltage and the interfacial transconductance, without assumptions on specific response regime and, in OECT, without invoking the volumetric capacitance. Interestingly, the EGOT model recovers EGOFET and OECT as limit cases and, in the latter case, explicitly represents the volumetric capacitance in terms of the energy disorder and the bandgap of the organic semiconductor.
RESUMO
The advent of immunotherapies with biological drugs has revolutionized the treatment of cancers and auto-immune diseases. However, in some patients, the production of anti-drug antibodies (ADAs) hampers the drug efficacy. The concentration of ADAs is typically in the range of 1-10 pm; hence their immunodetection is challenging. ADAs toward Infliximab (IFX), a drug used to treat rheumatoid arthritis and other auto-immune diseases, are focussed. An ambipolar electrolyte-gated transistor (EGT) immunosensor is reported based on a reduced graphene oxide (rGO) channel and IFX bound to the gate electrode as the specific probe. The rGO-EGTs are easy to fabricate and exhibit low voltage operations (≤ 0.3 V), a robust response within 15 min, and ultra-high sensitivity (10 am limit of detection). A multiparametric analysis of the whole rGO-EGT transfer curves based on the type-I generalized extreme value distribution is proposed. It is demonstrated that it allows to selectively quantify ADAs also in the co-presence of its antagonist tumor necrosis factor alpha (TNF-α), the natural circulating target of IFX.
Assuntos
Técnicas Biossensoriais , Humanos , Imunoensaio , Anticorpos , Infliximab , EletrólitosRESUMO
We report a dual gate/common channel organic transistor architecture designed for quantifying the concentration of one of the strands of miRNA-21 in solution. The device allows one to measure the differential response between two gate electrodes, viz. one sensing and one reference, both immersed in the electrolyte above the transistor channel. Hybridization with oligonucleotide in the picomolar regime induces a sizable reduction of the current flowing through the transistor channel. The device signal is reported at various gate voltages, showing maximum sensitivity in the sublinear regime, with a limit of detection as low as 35 pM. We describe the dose curves with an analytical function derived from a thermodynamic model of the reaction equilibria relevant in our experiment and device configuration, and we show that the apparent Hill dependence on analyte concentration, whose exponent lies between 0.5 and 1, emerges from the interplay of the different equilibria. The binding free energy characteristic of the hybridization on the device surface is found to be approximately 20% lower with respect to the reaction in solution, hinting to partially inhibiting effect of the surface and presence of competing reactions. Impedance spectroscopy and surface plasmon resonance (SPR) performed on the same oligonucleotide pair were correlated to the electronic current transduced by the EGOFET, and confirmed the selectivity of the biorecognition probe covalently bound on the gold surface.
Assuntos
Técnicas Biossensoriais , MicroRNAs , Eletrodos , Eletrólitos , Transistores EletrônicosRESUMO
The efficacy of immunotherapy can be undermined by the development of an immune response against a drug/antibody mediated by anti-drug antibodies (ADAs) in treated patients. We present the first label-free EGOFET immunosensor that integrates a biological drug, Nivolumab (Opdivo©), as a specific recognition moiety to quantitatively and selectively detect ADAs against the drug. The limit of detection is 100 fM. This demonstration is a prelude to the detection of ADAs in a clinical setting in the treatment of different pathologies, and it also enables rapid screening of biological drugs for immunogenicity.
Assuntos
Anticorpos Monoclonais/análise , Nivolumabe/imunologia , Transistores Eletrônicos , Anticorpos Monoclonais/imunologia , Eletrólitos/química , HumanosRESUMO
FeFe hydrogenases are the most efficient H2-producing enzymes. However, inactivation by O2 remains an obstacle that prevents them being used in many biotechnological devices. Here, we combine electrochemistry, site-directed mutagenesis, molecular dynamics and quantum chemical calculations to uncover the molecular mechanism of O2 diffusion within the enzyme and its reactions at the active site. We propose that the partial reversibility of the reaction with O2 results from the four-electron reduction of O2 to water. The third electron/proton transfer step is the bottleneck for water production, competing with formation of a highly reactive OH radical and hydroxylated cysteine. The rapid delivery of electrons and protons to the active site is therefore crucial to prevent the accumulation of these aggressive species during prolonged O2 exposure. These findings should provide important clues for the design of hydrogenase mutants with increased resistance to oxidative damage.