Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Plant Cell ; 34(5): 2019-2037, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35157082

RESUMO

Stomata optimize land plants' photosynthetic requirements and limit water vapor loss. So far, all of the molecular and electrical components identified as regulating stomatal aperture are produced, and operate, directly within the guard cells. However, a completely autonomous function of guard cells is inconsistent with anatomical and biophysical observations hinting at mechanical contributions of epidermal origins. Here, potassium (K+) assays, membrane potential measurements, microindentation, and plasmolysis experiments provide evidence that disruption of the Arabidopsis thaliana K+ channel subunit gene AtKC1 reduces pavement cell turgor, due to decreased K+ accumulation, without affecting guard cell turgor. This results in an impaired back pressure of pavement cells onto guard cells, leading to larger stomatal apertures. Poorly rectifying membrane conductances to K+ were consistently observed in pavement cells. This plasmalemma property is likely to play an essential role in K+ shuttling within the epidermis. Functional complementation reveals that restoration of the wild-type stomatal functioning requires the expression of the transgenic AtKC1 at least in the pavement cells and trichomes. Altogether, the data suggest that AtKC1 activity contributes to the building of the back pressure that pavement cells exert onto guard cells by tuning K+ distribution throughout the leaf epidermis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fotossíntese , Folhas de Planta/metabolismo , Estômatos de Plantas/metabolismo
2.
Plant Cell Physiol ; 63(2): 279-289, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34865157

RESUMO

Inhibition of Shaker K+ channel activity by external Na+ was previously reported in the melon (Cucumis melo L.) inwardly rectifying K+ channel MIRK and was hypothesized to contribute to salt tolerance. In this study, two inward Shaker K+ channels, CsKAT2 from cucumber (Cucumis sativus) and ClKAT2 from watermelon (Citrullus lanatus), were identified and characterized in Xenopus oocytes. Both channels were inwardly rectifying K+ channels with higher permeability to potassium than other monovalent cations and more active when external pH was acidic. Similarly to MIRK, their activity displayed an inhibition by external Na+, thus suggesting a common feature in Cucurbitaceae (Cucumis spp., Citrullus spp.). CsKAT2 and ClKAT2 are highly expressed in guard cells. After 24 h of plant treatment with 100 mM NaCl, the three KAT2-like genes were significantly downregulated in leaves and guard cells. Reciprocal chimeras were obtained between MIRK and Na+-insensitive AtKAT2 cDNAs. The chimera where the MIRK S5-P-S6 segment was replaced by that from AtKAT2 no longer showed Na+ sensitivity, while the inverse chimera gained Na+ sensitivity. These results provide evidence that the molecular basis of the channel blockage by Na+ is located in the S5-P-S6 region. Comparison of the electrostatic property in the S5-P-S6 region in AtKAT2 and MIRK revealed four key amino acid residues potentially governing Na+ sensitivity.


Assuntos
Tolerância ao Sal , Sódio , Transporte Biológico , Oócitos/metabolismo , Folhas de Planta , Potássio/metabolismo , Sódio/metabolismo
3.
Plant Cell Environ ; 45(6): 1734-1748, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35297056

RESUMO

Soil salinity constitutes a major environmental constraint to crop production worldwide. Leaf K+ /Na+ homoeostasis, which involves regulation of transpiration, and thus of the xylem sap flow, and control of the ionic composition of the ascending sap, is a key determinant of plant salt tolerance. Here, we show, using a reverse genetics approach, that the outwardly rectifying K+ -selective channel OsK5.2, which is involved in both K+ release from guard cells for stomatal closure in leaves and K+ secretion into the xylem sap in roots, is a strong determinant of rice salt tolerance (plant biomass production and shoot phenotype under saline constraint). OsK5.2 expression was upregulated in shoots from the onset of the saline treatment, and OsK5.2 activity in guard cells led to a fast decrease in transpirational water flow and, therefore, reduced Na+ translocation to shoots. In roots, upon saline treatment, OsK5.2 activity in xylem sap K+ loading was maintained, and even transiently increased, outperforming the negative effect on K+ translocation to shoots resulting from the reduction in xylem sap flow. Thus, the overall activity of OsK5.2 in shoots and roots, which both reduces Na+ translocation to shoots and benefits shoot K+ nutrition, strongly contributes to leaf K+ /Na+ homoeostasis.


Assuntos
Tolerância ao Sal , Xilema , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Transpiração Vegetal/fisiologia , Tolerância ao Sal/genética , Sódio/metabolismo , Xilema/metabolismo
4.
Int J Mol Sci ; 23(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36499572

RESUMO

Diazotrophic bacteria isolated from the rhizosphere of a wild wheat ancestor, grown from its refuge area in the Fertile Crescent, were found to be efficient Plant Growth-Promoting Rhizobacteria (PGPR), upon interaction with an elite wheat cultivar. In nitrogen-starved plants, they increased the amount of nitrogen in the seed crop (per plant) by about twofold. A bacterial growth medium was developed to investigate the effects of bacterial exudates on root development in the elite cultivar, and to analyze the exo-metabolomes and exo-proteomes. Altered root development was observed, with distinct responses depending on the strain, for instance, with respect to root hair development. A first conclusion from these results is that the ability of wheat to establish effective beneficial interactions with PGPRs does not appear to have undergone systematic deep reprogramming during domestication. Exo-metabolome analysis revealed a complex set of secondary metabolites, including nutrient ion chelators, cyclopeptides that could act as phytohormone mimetics, and quorum sensing molecules having inter-kingdom signaling properties. The exo-proteome-comprised strain-specific enzymes, and structural proteins belonging to outer-membrane vesicles, are likely to sequester metabolites in their lumen. Thus, the methodological processes we have developed to collect and analyze bacterial exudates have revealed that PGPRs constitutively exude a highly complex set of metabolites; this is likely to allow numerous mechanisms to simultaneously contribute to plant growth promotion, and thereby to also broaden the spectra of plant genotypes (species and accessions/cultivars) with which beneficial interactions can occur.


Assuntos
Microbiologia do Solo , Triticum , Triticum/metabolismo , Raízes de Plantas/metabolismo , Rizosfera , Bactérias , Desenvolvimento Vegetal , Plantas , Nitrogênio/metabolismo , Exsudatos de Plantas/metabolismo
5.
Plant J ; 102(6): 1249-1265, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31958173

RESUMO

The model legume Medicago truncatula possesses a single outward Shaker K+ channel, whereas Arabidopsis thaliana possesses two channels of this type, named AtSKOR and AtGORK, with AtSKOR having been shown to play a major role in K+ secretion into the xylem sap in the root vasculature and with AtGORK being shown to mediate the efflux of K+ across the guard cell membrane, leading to stomatal closure. Here we show that the expression pattern of the single M. truncatula outward Shaker channel, which has been named MtGORK, includes the root vasculature, guard cells and root hairs. As shown by patch-clamp experiments on root hair protoplasts, besides the Shaker-type slowly activating outwardly rectifying K+ conductance encoded by MtGORK, a second K+ -permeable conductance, displaying fast activation and weak rectification, can be expressed by M. truncatula. A knock-out (KO) mutation resulting in an absence of MtGORK activity is shown to weakly reduce K+ translocation to shoots, and only in plants engaged in rhizobial symbiosis, but to strongly affect the control of stomatal aperture and transpirational water loss. In legumes, the early electrical signaling pathway triggered by Nod-factor perception is known to comprise a short transient depolarization of the root hair plasma membrane. In the absence of the functional expression of MtGORK, the rate of the membrane repolarization is found to be decreased by a factor of approximately two. This defect was without any consequence on infection thread development and nodule production in plants grown in vitro, but a decrease in nodule production was observed in plants grown in soil.


Assuntos
Medicago truncatula/metabolismo , Proteínas de Plantas/metabolismo , Superfamília Shaker de Canais de Potássio/metabolismo , Animais , Técnicas de Inativação de Genes , Medicago truncatula/genética , Medicago truncatula/fisiologia , Oócitos , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Transpiração Vegetal , Potássio/metabolismo , Superfamília Shaker de Canais de Potássio/genética , Superfamília Shaker de Canais de Potássio/fisiologia , Xenopus
6.
Proc Natl Acad Sci U S A ; 115(25): 6488-6493, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29866831

RESUMO

Building a proton gradient across a biological membrane and between different tissues is a matter of great importance for plant development and nutrition. To gain a better understanding of proton distribution in the plant root apoplast as well as across the plasma membrane, we generated Arabidopsis plants expressing stable membrane-anchored ratiometric fluorescent sensors based on pHluorin. These sensors enabled noninvasive pH-specific measurements in mature root cells from the medium-epidermis interface up to the inner cell layers that lie beyond the Casparian strip. The membrane-associated apoplastic pH was much more alkaline than the overall apoplastic space pH. Proton concentration associated with the plasma membrane was very stable, even when the growth medium pH was altered. This is in apparent contradiction with the direct connection between root intercellular space and the external medium. The plasma membrane-associated pH in the stele was the most preserved and displayed the lowest apoplastic pH (6.0 to 6.1) and the highest transmembrane delta pH (1.5 to 2.2). Both pH values also correlated well with optimal activities of channels and transporters involved in ion uptake and redistribution from the root to the aerial part. In growth medium where ionic content is minimized, the root plasma membrane-associated pH was more affected by environmental proton changes, especially for the most external cell layers. Calcium concentration appears to play a major role in apoplastic pH under these restrictive conditions, supporting a role for the cell wall in pH homeostasis of the unstirred surface layer of plasma membrane in mature roots.


Assuntos
Membrana Celular/fisiologia , Raízes de Plantas/fisiologia , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/fisiologia , Membrana Celular/metabolismo , Parede Celular/fisiologia , Homeostase/fisiologia , Concentração de Íons de Hidrogênio , Raízes de Plantas/metabolismo
7.
Plant J ; 98(3): 418-433, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30673148

RESUMO

Root hairs, as lateral extensions of epidermal cells, provide large absorptive surfaces to the root and are major actors in plant hydromineral nutrition. In contact with the soil they also constitute a site of interactions between the plant and rhizospheric microorganisms. In legumes, initiation of symbiotic interactions with N2 -fixing rhizobia is often triggered at the root hair cell membrane in response to nodulation factors secreted by rhizobia, and involves early signaling events with changes in H+ , Ca2+ , K+ and Cl- fluxes inducing transient depolarization of the cell membrane. Here, we aimed to build a functional repertoire of the major root hair conductances to cations and anions in the sequenced legume model Medicago truncatula. Five root hair conductances were characterized through patch-clamp experiments on enzymatically recovered root hair protoplasts. These conductances displayed varying properties of voltage dependence, kinetics and ion selectivity. They consisted of hyperpolarization- and depolarization-activated conductances for K+ , cations or Cl- . Among these, one weakly outwardly rectifying cationic conductance and one hyperpolarization-activated slowly inactivating anionic conductance were not known as active in root hairs. All five conductances were detected in apical regions of young growing root hairs using membrane spheroplasts obtained by laser-assisted cell-wall microdissection. Combined with recent root hair transcriptomes of M. truncatula, this functional repertoire of conductances is expected to help the identification of candidate genes for reverse genetics studies to investigate the possible role of each conductance in root hair growth and interaction with the biotic and abiotic environment.


Assuntos
Ânions/metabolismo , Cátions/metabolismo , Membrana Celular/metabolismo , Medicago truncatula/metabolismo , Raízes de Plantas/metabolismo , Proteínas de Plantas/metabolismo
9.
Plant J ; 92(1): 43-56, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28670755

RESUMO

The occurrence of radiocesium in food has raised sharp health concerns after nuclear accidents. Despite being present at low concentrations in contaminated soils (below µm), cesium (Cs+ ) can be taken up by crops and transported to their edible parts. This plant capacity to take up Cs+ from low concentrations has notably affected the production of rice (Oryza sativa L.) in Japan after the nuclear accident at Fukushima in 2011. Several strategies have been put into practice to reduce Cs+ content in this crop species such as contaminated soil removal or adaptation of agricultural practices, including dedicated fertilizer management, with limited impact or pernicious side-effects. Conversely, the development of biotechnological approaches aimed at reducing Cs+ accumulation in rice remain challenging. Here, we show that inactivation of the Cs+ -permeable K+ transporter OsHAK1 with the CRISPR-Cas system dramatically reduced Cs+ uptake by rice plants. Cs+ uptake in rice roots and in transformed yeast cells that expressed OsHAK1 displayed very similar kinetics parameters. In rice, Cs+ uptake is dependent on two functional properties of OsHAK1: (i) a poor capacity of this system to discriminate between Cs+ and K+ ; and (ii) a high capacity to transport Cs+ from very low external concentrations that is likely to involve an active transport mechanism. In an experiment with a Fukushima soil highly contaminated with 137 Cs+ , plants lacking OsHAK1 function displayed strikingly reduced levels of 137 Cs+ in roots and shoots. These results open stimulating perspectives to smartly produce safe food in regions contaminated by nuclear accidents.


Assuntos
Sistemas CRISPR-Cas , Proteínas de Transporte de Cátions/metabolismo , Césio/metabolismo , Oryza/genética , Proteínas de Plantas/metabolismo , Agricultura , Proteínas de Transporte de Cátions/genética , Radioisótopos de Césio/análise , Fertilizantes , Japão , Oryza/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Solo/química
10.
Environ Microbiol ; 20(5): 1873-1887, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29614209

RESUMO

Ectomycorrhizal fungi play an essential role in the ecology of boreal and temperate forests through the improvement of tree mineral nutrition. Potassium (K+ ) is an essential nutrient for plants and is needed in high amounts. We recently demonstrated that the ectomycorrhizal fungus Hebeloma cylindrosporum improves the K+ nutrition of Pinus pinaster under shortage conditions. Part of the transport systems involved in K+ uptake by the fungus has been deciphered, while the molecular players responsible for the transfer of this cation towards the plant remain totally unknown. Analysis of the genome of H. cylindrosporum revealed the presence of three putative tandem-pore outward-rectifying K+ (TOK) channels that could contribute to this transfer. Here, we report the functional characterization of these three channels through two-electrode voltage-clamp experiments in oocytes and yeast complementation assays. The expression pattern and physiological role of these channels were analysed in symbiotic interaction with P. pinaster. Pine seedlings colonized by fungal transformants overexpressing two of them displayed a larger accumulation of K+ in shoots. This study revealed that TOK channels have distinctive properties and functions in axenic and symbiotic conditions and suggested that HcTOK2.2 is implicated in the symbiotic transfer of K+ from the fungus towards the plant.


Assuntos
Micorrizas/metabolismo , Pinus/microbiologia , Potássio/metabolismo , Transporte Biológico , Hebeloma/genética , Minerais/metabolismo , Canais de Potássio , Saccharomyces cerevisiae/metabolismo , Plântula , Simbiose/genética
11.
Plant Physiol ; 174(4): 2409-2418, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28626008

RESUMO

The roles of potassium channels from the Shaker family in stomatal movements have been investigated by reverse genetics analyses in Arabidopsis (Arabidopsis thaliana), but corresponding information is lacking outside this model species. Rice (Oryza sativa) and other cereals possess stomata that are more complex than those of Arabidopsis. We examined the role of the outward Shaker K+ channel gene OsK5.2. Expression of the OsK5.2 gene (GUS reporter strategy) was observed in the whole stomatal complex (guard cells and subsidiary cells), root vasculature, and root cortex. In stomata, loss of OsK5.2 functional expression resulted in lack of time-dependent outward potassium currents in guard cells, higher rates of water loss through transpiration, and severe slowdown of stomatal closure. In line with the expression of OsK5.2 in the plant vasculature, mutant plants displayed a reduced K+ translocation from the root system toward the leaves via the xylem. The comparison between rice and Arabidopsis show that despite the strong conservation of Shaker family in plants, substantial differences can exist between the physiological roles of seemingly orthologous genes, as xylem loading depends on SKOR and stomatal closure on GORK in Arabidopsis, whereas both functions are executed by the single OsK5.2 Shaker in rice.


Assuntos
Canais Iônicos/metabolismo , Oryza/metabolismo , Exsudatos de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Estômatos de Plantas/metabolismo , Potássio/metabolismo , Xilema/metabolismo , Arabidopsis , Transporte Biológico , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Canais Iônicos/genética , Cinética , Mutação/genética , Técnicas de Patch-Clamp , Filogenia , Proteínas de Plantas/genética , Brotos de Planta/metabolismo , Estômatos de Plantas/citologia , Transpiração Vegetal/fisiologia , Água
12.
Plant J ; 85(5): 675-85, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26846460

RESUMO

Efficient stomatal opening requires activation of KAT-type K(+) channels, which mediate K(+) influx into guard cells. Most KAT-type channels are functionally facilitated by extracellular acidification. However, despite sequence and structural homologies, the maize counterpart of Arabidopsis KAT1 (ZmK2.1) is resistant to pH activation. To understand the structural determinant that results in the differential pH activation of these counterparts, we analysed chimeric channels and channels with point mutations for ZmK2.1 and its closest Arabidopsis homologue KAT1. Exchange of the S1-S2 linkers altered the pH sensitivity between the two channels, suggesting that the S1-S2 linker is essentially involved in the pH sensitivity. The effects of D92 mutation within the linker motif together with substitution of the first half of the linker largely resemble the effects of substitution of the complete linker. Topological modelling predicts that one of the two cysteines located on the outer face section of the S5 domain may serve as a potential titratable group that interacts with the S1-S2 linker. The difference between ZmK2.1 and KAT1 is predicted to be the result of the distance of the stabilized linkers from the titratable group. In KAT1, residue K85 within the linker forms a hydrogen bond with C211 that enables the pH activation; conversely, the linker of ZmK2.1 is distantly located and thus does not interact with the equivalent titration group (C208). Thus, in addition to the known structural contributors to the proton activation of KAT channels, we have uncovered a previously unidentified component that is strongly involved in this complex proton activation network.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Plantas/genética , Canais de Potássio Corretores do Fluxo de Internalização/genética , Zea mays/genética , Sequência de Aminoácidos , Aminoácidos/química , Aminoácidos/genética , Aminoácidos/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação/genética , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Modelos Moleculares , Proteínas Mutantes Quiméricas/química , Proteínas Mutantes Quiméricas/genética , Proteínas Mutantes Quiméricas/metabolismo , Mutação , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/química , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Ligação Proteica , Domínios Proteicos , Homologia de Sequência de Aminoácidos , Zea mays/metabolismo
13.
Plant J ; 83(3): 401-12, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26032087

RESUMO

KAT1-type channels mediate K(+) influx into guard cells that enables stomatal opening. In this study, a KAT1-type channel AmKAT1 was cloned from the xerophyte Ammopiptanthus mongolicus. In contrast to most KAT1-type channels, its activation is strongly dependent on external K(+) concentration, so it can be used as a model to explore the mechanism for the K(+) -dependent gating of KAT1-type channels. Domain swapping between AmKAT1 and KAT1 reveals that the S5-pore-S6 region controls the K(+) dependence of AmKAT1, and residue substitutions show that multiple residues within the S5-Pore linker and Pore are involved in its K(+) -dependent gating. Importantly, complex interactions occur among these residues, and it is these interactions that determine its K(+) dependence. Finally, we analyzed the potential mechanism for the K(+) dependence of AmKAT1, which could originate from the requirement of K(+) occupancy in the selectivity filter to maintain its conductive conformation. These results provide new insights into the molecular basis of the K(+) -dependent gating of KAT1-type channels.


Assuntos
Proteínas de Arabidopsis/fisiologia , Ativação do Canal Iônico/genética , Estômatos de Plantas/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Canais de Potássio/fisiologia , Ativação do Canal Iônico/fisiologia
14.
Plant J ; 83(3): 466-79, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26058834

RESUMO

In most plants, NO(3)(-) constitutes the major source of nitrogen, and its assimilation into amino acids is mainly achieved in shoots. Furthermore, recent reports have revealed that reduction of NO(3)(-) translocation from roots to shoots is involved in plant acclimation to abiotic stress. NPF2.3, a member of the NAXT (nitrate excretion transporter) sub-group of the NRT1/PTR family (NPF) from Arabidopsis, is expressed in root pericycle cells, where it is targeted to the plasma membrane. Transport assays using NPF2.3-enriched Lactococcus lactis membranes showed that this protein is endowed with NO(3)(-) transport activity, displaying a strong selectivity for NO(3)(-) against Cl(-). In response to salt stress, NO(3)(-) translocation to shoots is reduced, at least partly because expression of the root stele NO(3)(-) transporter gene NPF7.3 is decreased. In contrast, NPF2.3 expression was maintained under these conditions. A loss-of-function mutation in NPF2.3 resulted in decreased root-to-shoot NO(3)(-) translocation and reduced shoot NO(3)(-) content in plants grown under salt stress. Also, the mutant displayed impaired shoot biomass production when plants were grown under mild salt stress. These mutant phenotypes were dependent on the presence of Na(+) in the external medium. Our data indicate that NPF2.3 is a constitutively expressed transporter whose contribution to NO(3)(-) translocation to the shoots is quantitatively and physiologically significant under salinity.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Proteínas de Transporte de Ânions/fisiologia , Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Proteínas de Membrana Transportadoras/fisiologia , Proteínas de Plantas/fisiologia , Tolerância ao Sal/fisiologia , Lactococcus lactis , Transportadores de Nitrato
15.
Plant Cell Physiol ; 57(10): 2047-2057, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27440547

RESUMO

TmHKT1;4-A1 and TmHKT1;4-A2 are two Na+ transporter genes that have been identified as associated with the salt tolerance Nax1 locus found in a durum wheat (Triticum turgidum L. subsp. durum) line issued from a cross with T. monococcum. In the present study, we were interested in getting clues on the molecular mechanisms underpinning this salt tolerance quantitative trait locus (QTL). By analyzing the phylogenetic relationships between wheat and T. monococcum HKT1;4-type genes, we found that durum and bread wheat genomes possess a close homolog of TmHKT1;4-A1, but no functional close homolog of TmHKT1;4-A2. Furthermore, performing real-time reverse transcription-PCR experiments, we showed that TmHKT1;4-A1 and TmHKT1;4-A2 are similarly expressed in the leaves but that TmHKT1;4-A2 is more strongly expressed in the roots, which would enable it to contribute more to the prevention of Na+ transfer to the shoots upon salt stress. We also functionally characterized the TmHKT1;4-A1 and TmHKT1;4-A2 transporters by expressing them in Xenopus oocytes. The two transporters displayed close functional properties (high Na+/K+ selectivity, low affinity for Na+, stimulation by external K+ of Na+ transport), but differed in some quantitative parameters: Na+ affinity was 3-fold lower and the maximal inward conductance was 3-fold higher in TmHKT1;4-A2 than in TmHKT1;4-A1. The conductance of TmHKT1;4-A2 at high Na+ concentration (>10 mM) was also shown to be higher than that of the two durum wheat HKT1;4-type transporters so far characterized. Altogether, these data support the hypothesis that TmHKT1;4-A2 is responsible for the Nax1 trait and provide new insight into the understanding of this QTL.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Proteínas de Plantas/metabolismo , Locos de Características Quantitativas/genética , Tolerância ao Sal/genética , Triticum/genética , Triticum/fisiologia , Animais , Proteínas de Transporte de Cátions/genética , Cátions , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Filogenia , Proteínas de Plantas/genética , Reação em Cadeia da Polimerase em Tempo Real , Tolerância ao Sal/efeitos dos fármacos , Sódio/farmacologia , Cloreto de Sódio/farmacologia , Triticum/efeitos dos fármacos , Triticum/crescimento & desenvolvimento , Xenopus
16.
BMC Plant Biol ; 16: 2, 2016 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-26728150

RESUMO

BACKGROUND: The plant nuclear pore complex has strongly attracted the attention of the scientific community during the past few years, in particular because of its involvement in hormonal and pathogen/symbiotic signalling. In Arabidopsis thaliana, more than 30 nucleoporins have been identified, but only a few of them have been characterized. Among these, AtNUP160, AtNUP96, AtNUP58, and AtTPR have been reported to modulate auxin signalling, since corresponding mutants are suppressors of the auxin resistance conferred by the axr1 (auxin-resistant) mutation. The present work is focused on AtNUP62, which is essential for embryo and plant development. This protein is one of the three nucleoporins (with AtNUP54 and AtNUP58) of the central channel of the nuclear pore complex. RESULTS: AtNUP62 promoter activity was detected in many organs, and particularly in the embryo sac, young germinating seedlings and at the adult stage in stipules of cauline leaves. The atnup62-1 mutant, harbouring a T-DNA insertion in intron 5, was identified as a knock-down mutant. It displayed developmental phenotypes that suggested defects in auxin transport or responsiveness. Atnup62 mutant plantlets were found to be hypersensitive to auxin, at the cotyledon and root levels. The phenotype of the AtNUP62-GFP overexpressing line further supported the existence of a link between AtNUP62 and auxin signalling. Furthermore, the atnup62 mutation led to an increase in the activity of the DR5 auxin-responsive promoter, and suppressed the auxin-resistant root growth and leaf serration phenotypes of the axr1 mutant. CONCLUSION: AtNUP62 appears to be a major negative regulator of auxin signalling. Auxin hypersensitivity of the atnup62 mutant, reminding that of atnup58 (and not observed with other nucleoporin mutants), is in agreement with the reported interaction between AtNUP62 and AtNUP58 proteins, and suggests closely related functions. The effect of AtNUP62 on auxin signalling likely occurs in relation to scaffold proteins of the nuclear pore complex (AtNUP160, AtNUP96 and AtTPR).


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ácidos Indolacéticos/metabolismo , Glicoproteínas de Membrana/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Mutagênese Insercional , Regiões Promotoras Genéticas , Transdução de Sinais , Transformação Genética
17.
Plant Cell ; 25(10): 4028-43, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24104564

RESUMO

The pH homeostasis of endomembranes is essential for cellular functions. In order to provide direct pH measurements in the endomembrane system lumen, we targeted genetically encoded ratiometric pH sensors to the cytosol, the endoplasmic reticulum, and the trans-Golgi, or the compartments labeled by the vacuolar sorting receptor (VSR), which includes the trans-Golgi network and prevacuoles. Using noninvasive live-cell imaging to measure pH, we show that a gradual acidification from the endoplasmic reticulum to the lytic vacuole exists, in both tobacco (Nicotiana tabacum) epidermal (ΔpH -1.5) and Arabidopsis thaliana root cells (ΔpH -2.1). The average pH in VSR compartments was intermediate between that of the trans-Golgi and the vacuole. Combining pH measurements with in vivo colocalization experiments, we found that the trans-Golgi network had an acidic pH of 6.1, while the prevacuole and late prevacuole were both more alkaline, with pH of 6.6 and 7.1, respectively. We also showed that endosomal pH, and subsequently vacuolar trafficking of soluble proteins, requires both vacuolar-type H(+) ATPase-dependent acidification as well as proton efflux mediated at least by the activity of endosomal sodium/proton NHX-type antiporters.


Assuntos
Arabidopsis/fisiologia , Nicotiana/fisiologia , Força Próton-Motriz , Retículo Endoplasmático/fisiologia , Concentração de Íons de Hidrogênio , Trocadores de Sódio-Hidrogênio/fisiologia , ATPases Vacuolares Próton-Translocadoras/fisiologia , Vacúolos/fisiologia , Rede trans-Golgi/fisiologia
18.
Plant J ; 79(2): 322-33, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24891222

RESUMO

Faced with declining soil-water potential, plants synthesize abscisic acid (ABA), which then triggers stomatal closure to conserve tissue moisture. Closed stomates, however, also create several physiological dilemmas. Among these, the large CO2 influx required for net photosynthesis will be disrupted. Depleting CO2 in the plant will in turn bias stomatal opening by suppressing ABA sensitivity, which then aggravates transpiration further. We have investigated the molecular basis of how C3 plants resolve this H2 O-CO2 conflicting priority created by stomatal closure. Here, we have identified in Arabidopsis thaliana an early drought-induced spermidine spermine-N(1) -acetyltransferase homolog, which can slow ABA-mediated stomatal closure. Evidence from genetic, biochemical and physiological analyses has revealed that this protein does so by acetylating the metabolite 1,3-diaminopropane (DAP), thereby turning on the latter's intrinsic activity. Acetylated DAP triggers plasma membrane electrical and ion transport properties in an opposite way to those by ABA. Thus in adapting to low soil-water availability, acetyl-DAP could refrain stomates from complete closure to sustain CO2 diffusion to photosynthetic tissues.


Assuntos
Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Diaminas/metabolismo , Secas , Estômatos de Plantas/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Transdução de Sinais
19.
Plant Physiol ; 164(3): 1415-29, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24406792

RESUMO

Shaker K(+) channels form the major K(+) conductance of the plasma membrane in plants. They are composed of four subunits arranged around a central ion-conducting pore. The intracellular carboxy-terminal region of each subunit contains several regulatory elements, including a C-linker region and a cyclic nucleotide-binding domain (CNBD). The C-linker is the first domain present downstream of the sixth transmembrane segment and connects the CNBD to the transmembrane core. With the aim of identifying the role of the C-linker in the Shaker channel properties, we performed subdomain swapping between the C-linker of two Arabidopsis (Arabidopsis thaliana) Shaker subunits, K(+) channel in Arabidopsis thaliana2 (KAT2) and Arabidopsis thaliana K(+) rectifying channel1 (AtKC1). These two subunits contribute to K(+) transport in planta by forming heteromeric channels with other Shaker subunits. However, they display contrasting behavior when expressed in tobacco mesophyll protoplasts: KAT2 forms homotetrameric channels active at the plasma membrane, whereas AtKC1 is retained in the endoplasmic reticulum when expressed alone. The resulting chimeric/mutated constructs were analyzed for subcellular localization and functionally characterized. We identified two contiguous amino acids, valine-381 and serine-382, located in the C-linker carboxy-terminal end, which prevent KAT2 surface expression when mutated into the equivalent residues from AtKC1. Moreover, we demonstrated that the nine-amino acid stretch 312TVRAASEFA320 that composes the first C-linker α-helix located just below the pore is a crucial determinant of KAT2 channel activity. A KAT2 C-linker/CNBD three-dimensional model, based on animal HCN (for Hyperpolarization-activated, cyclic nucleotide-gated K(+)) channels as structure templates, has been built and used to discuss the role of the C-linker in plant Shaker inward channel structure and function.


Assuntos
Aminoácidos/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/química , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , Ativação do Canal Iônico , Modelos Moleculares , Dados de Sequência Molecular , Mutação Puntual/genética , Estrutura Terciária de Proteína , Transporte Proteico , Deleção de Sequência/genética , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Frações Subcelulares/metabolismo
20.
Plant Cell ; 24(4): 1522-33, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22523205

RESUMO

Plant cell growth and stress signaling require Ca²âº influx through plasma membrane transport proteins that are regulated by reactive oxygen species. In root cell growth, adaptation to salinity stress, and stomatal closure, such proteins operate downstream of the plasma membrane NADPH oxidases that produce extracellular superoxide anion, a reactive oxygen species that is readily converted to extracellular hydrogen peroxide and hydroxyl radicals, OH•. In root cells, extracellular OH• activates a plasma membrane Ca²âº-permeable conductance that permits Ca²âº influx. In Arabidopsis thaliana, distribution of this conductance resembles that of annexin1 (ANN1). Annexins are membrane binding proteins that can form Ca²âº-permeable conductances in vitro. Here, the Arabidopsis loss-of-function mutant for annexin1 (Atann1) was found to lack the root hair and epidermal OH•-activated Ca²âº- and K⁺-permeable conductance. This manifests in both impaired root cell growth and ability to elevate root cell cytosolic free Ca²âº in response to OH•. An OH•-activated Ca²âº conductance is reconstituted by recombinant ANN1 in planar lipid bilayers. ANN1 therefore presents as a novel Ca²âº-permeable transporter providing a molecular link between reactive oxygen species and cytosolic Ca²âº in plants.


Assuntos
Anexina A1/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Radical Hidroxila/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Raízes de Plantas/citologia , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Membrana Celular/efeitos dos fármacos , Difusão/efeitos dos fármacos , Bicamadas Lipídicas/metabolismo , Células Vegetais/efeitos dos fármacos , Células Vegetais/metabolismo , Epiderme Vegetal/efeitos dos fármacos , Epiderme Vegetal/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/fisiologia , Potássio/metabolismo , Protoplastos/efeitos dos fármacos , Protoplastos/metabolismo , Proteínas Recombinantes/isolamento & purificação , Superfamília Shaker de Canais de Potássio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA