Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Phys Rev Lett ; 106(14): 147401, 2011 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-21561221

RESUMO

We observe an optical signature induced by the modulation of electron density inside a bulk transparent solid that is quasiperiodically ionized on an attosecond time scale by electric field peaks of a focused few-cycle laser pulse. The emitted optical signal resulting from the attosecond ionization dynamics is spatially, temporally and spectrally isolated from concomitant optical responses through the use of a noncollinear pump-probe technique. The method holds promise for developing an attosecond metrology for bulk solids, in which, unlike in the established attosecond metrology of gases and surfaces, direct detection of charged particles is unfeasible.

2.
Phys Rev Lett ; 104(16): 163904, 2010 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-20482052

RESUMO

We have experimentally detected optical harmonics that are generated due to a tunneling-ionization-induced modulation of the electron density. The optical signature of electron tunneling can be isolated from concomitant optical responses by using a noncollinear pump-probe setup. Whereas previously demonstrated tools for attosecond metrology of gases, plasmas, and surfaces rely on direct detection of charged particles, detection of the background-free time-resolved optical signal, which uniquely originates from electron tunneling, offers an interesting alternative that is especially suited for systems in which free electrons cannot be directly measured.

3.
Opt Express ; 14(9): 4128-34, 2006 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19516561

RESUMO

A high-quality spectrally isolated hollow beam is produced through a nonlinear-optical transformation of Ti: sapphire laser pulses in a higher order mode of a photonic-crystal fiber (PCF). Instead of a doughnut shape, typical of hollow beams produced by other methods, the far-field image of the hollow-beam PCF output features perfect sixth-order rotation symmetry, dictated by the symmetry of the PCF structure. The frequency of the PCF-generated hollow beam can be tuned by varying the input beam parameters, making a few-mode PCF a convenient and flexible tool for the guiding and trapping of atoms and creation of all-fiber optical tweezers.

4.
Opt Lett ; 33(9): 977-9, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18451958

RESUMO

Hollow-core photonic-crystal fibers are shown to enable dynamically phase-matched high-order harmonic generation by a gigawatt soliton pump field. With a careful design of the waveguide structure and an appropriate choice of input-pulse and gas parameters, a remarkably broadband phase matching can be achieved for a soliton pump field and a large group of optical harmonics in the soft-x-ray-extreme-ultraviolet spectral range.

5.
Opt Lett ; 31(15): 2323-5, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16832473

RESUMO

We demonstrate time-resolved coherent anti-Stokes Raman scattering (CARS) by using a frequency-tunable femtosecond soliton output of a silica photonic-crystal fiber (PCF) as a Stokes field. This approach allows quantum beats originating from two close Raman modes to be resolved in the time-domain CARS response. The nonresonant CARS background is efficiently suppressed by introducing a delay time between the probe pulse and the pump-Stokes pulse dyad, suggesting a convenient fiber-optic format for the Stokes source in time-resolved CARS and allowing sensitivity improvement in PCF-based CARS spectroscopes and microscopes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA