Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Opt Express ; 25(25): 31774-31788, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29245847

RESUMO

Applying extreme ultraviolet (XUV) transient absorption spectroscopy, the dynamics of the two laser dressed transitions 3d5/2-to-5p3/2 and 3p3/2-to-5s1/2 at photon energies of 91.3 eV and 210.4 eV were examined with attosecond temporal resolution. The dressing process was modeled with density matrix equations which are found to describe very accurately both the experimentally observed transmission dynamics and the linear and nonlinear dressing oscillations at 0.75 PHz and 1.5 PHz frequencies. Furthermore, using Fourier transform XUV spectroscopy, quantum beats from the 3d5/2-3d3/2 and 3p3/2-3p1/2 sublevels at 0.3 PHz and 2.0 PHz were experimentally identified and resolved.

2.
Opt Express ; 24(5): 5253-5262, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-29092350

RESUMO

External passive femtosecond enhancement cavities (fsECs) are widely used to increase the efficiency of non-linear conversion processes like high harmonic generation (HHG) at high repetition rates. Their performance is often limited by elliptical beam profiles, caused by oblique incidence on spherical focusing mirrors. We introduce a novel three-dimensionally folded variant of the typical planar bow-tie resonator geometry that guarantees circular beam profiles, maintains linear polarization, and allows for a significantly tighter focus as well as a larger beam cross-section on the cavity mirrors. The scheme is applied to improve focusing in a Ti:Sapphire based VUV frequency comb system, targeting the 5th harmonic around 160 nm (7.8 eV) towards high-precision spectroscopy of the low-energy isomer state of Thorium-229. It will also be beneficial in fsEC-applications with even higher seeding and intracavity power where the damage threshold of the mirrors becomes a major concern.

3.
Opt Express ; 24(8): 8028-44, 2016 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-27137242

RESUMO

Optical amplifiers in all ranges of the electromagnetic spectrum exhibit an essential characteristic, namely the input signal during the propagation in the amplifier medium is multiplied by the avalanche effect of the stimulated emission to produce exponential growth. We perform a theoretical study motivated and supported by experimental data on a He gas amplifier driven by intense 30-fs-long laser pulses and seeded with attosecond pulse trains generated in a separated Ne gas jet. We demonstrate that the strong-field theory in the frame of high harmonic generation fully supports the appearance of the avalanche effect in the amplification of extreme ultraviolet attosecond pulse trains. We theoretically separate and identify different physical processes taking part in the interaction and we demonstrate that X-ray parametric amplification dominates over others. In particular, we identify strong-field mediated intrapulse X-ray parametric processes as decisive for amplification at the single-atom level. We confirm that the amplification takes place at photon energies where the amplifier is seeded and when the seed pulses are perfectly synchronized with the driving strong field in the amplifier. Furthermore, propagation effects, phase matching and seed synchronization can be exploited to tune the amplified spectral range within the seed bandwidth.

4.
Opt Express ; 20(6): 6185-90, 2012 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-22418499

RESUMO

We report on the realization of an intracavity high harmonic source with a cutoff above 30 eV. The EUV source is based on a high power, hard-aperture, Kerr-lens mode-locked Ti:sapphire oscillator with a repetition rate of 9.4 MHz. The laser is operated in the net negative dispersion regime resulting in intracavity pulses as short as 17 fs with 1 µJ pulse energy. In a second intracavity focus, intensity more than 10¹4 W/cm² has been achieved, which is sufficient for high harmonic generation in a Xenon gas jet.


Assuntos
Óxido de Alumínio/química , Lasers , Oscilometria/instrumentação , Titânio/química , Desenho de Equipamento , Análise de Falha de Equipamento , Raios Ultravioleta
5.
Opt Express ; 17(3): 1493-501, 2009 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-19188978

RESUMO

The macroscopic build-up of the high-order harmonic signal depends on the free electron density in the generation medium. The free electrons affect the harmonic yield and spectral shape through modifying the refractive index and the phase matching conditions. These dependences allow studying the He(+) ion channel formation in a He gas jet. The evolution of an ion channel created by an ultrashort laser pulse via optical field ionization was monitored using the harmonic signal generated by a collinear propagating second laser pulse. From the measured high harmonic signal as function of the delay we are able to gain information about the free electron density. Under our experimental condition, the ion channel has been fully formed 300 fs after the first laser pulse, resulting in an enhancement of harmonic yield of the second laser pulse by two orders of magnitude.

6.
Opt Express ; 11(3): 240-7, 2003 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-19461729

RESUMO

Sub-25 fs pulses from a multipass amplifier system have been spectrally broadened in a hollow fiber up to 250 nm. Using a combination of a prism compressor and an improved acousto-optic programmable dispersive filter (AOPDF), we were able to compress the pulses close to their transform limit. Under optimized conditions we achieved pulses with a duration of 8 fs and a peak power up to 9 GW.

7.
Phys Rev Lett ; 92(16): 163002, 2004 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-15169224

RESUMO

Coherent soft-x-ray radiation up to photon energies of 700 eV is obtained by focusing several-mJ, 10-fs near infrared laser pulses into a He gas jet. The observed nearly constant photon yield over several hundred eVs may be attributed to nonadiabatic self-phase matching, originating from a substantial ionization within a fraction of the optical cycle of the driving laser pulse.


Assuntos
Hélio/química , Microscopia/métodos , Titânio/química , Raios X , Fótons , Raios Ultravioleta
8.
Opt Lett ; 28(19): 1832-4, 2003 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-14514116

RESUMO

A three-stage, 1-kHz amplifier system delivering pulses shorter than 10 fs with a peak power in excess of 0.3 TW is reported. Passive and active spectral intensity and phase control allows the preservation of a bandwidth of 120 nm (FWHM) to as high as multimillijoule energy levels and temporal compression of the broadband pulses close to their Fourier limit. The system is scalable to peak powers well beyond 1 TW and holds promise for substantially advancing the state of the art of coherent laboratory soft-x-ray sources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA