Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Hum Brain Mapp ; 45(12): e26805, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39185685

RESUMO

The glymphatic system (GS) is a whole-brain perivascular network, consisting of three compartments: the periarterial and perivenous spaces and the interposed brain parenchyma. GS dysfunction has been implicated in neurodegenerative diseases, particularly Alzheimer's disease (AD). So far, comprehensive research on GS in humans has been limited by the absence of easily accessible biomarkers. Recently, promising non-invasive methods based on magnetic resonance imaging (MRI) along with aquaporin-4 (AQP4) quantification in the cerebrospinal fluid (CSF) were introduced for an indirect assessment of each of the three GS compartments. We recruited 111 consecutive subjects presenting with symptoms suggestive of degenerative cognitive decline, who underwent 3 T MRI scanning including multi-shell diffusion-weighted images. Forty nine out of 111 also underwent CSF examination with quantification of CSF-AQP4. CSF-AQP4 levels and MRI measures-including perivascular spaces (PVS) counts and volume fraction (PVSVF), white matter free water fraction (FW-WM) and mean kurtosis (MK-WM), diffusion tensor imaging analysis along the perivascular spaces (DTI-ALPS) (mean, left and right)-were compared among patients with AD (n = 47) and other neurodegenerative diseases (nAD = 24), patients with stable mild cognitive impairment (MCI = 17) and cognitively unimpaired (CU = 23) elderly people. Two runs of analysis were conducted, the first including all patients; the second after dividing both nAD and AD patients into two subgroups based on gray matter atrophy as a proxy of disease stage. Age, sex, years of education, and scanning time were included as confounding factors in the analyses. Considering the whole cohort, patients with AD showed significantly higher levels of CSF-AQP4 (exp(b) = 2.05, p = .005) and FW-WM FW-WM (exp(b) = 1.06, p = .043) than CU. AQP4 levels were also significantly higher in nAD in respect to CU (exp(b) = 2.98, p < .001). CSF-AQP4 and FW-WM were significantly higher in both less atrophic AD (exp(b) = 2.20, p = .006; exp(b) = 1.08, p = .019, respectively) and nAD patients (exp(b) = 2.66, p = .002; exp(b) = 1.10, p = .019, respectively) compared to CU subjects. Higher total (exp(b) = 1.59, p = .013) and centrum semiovale PVS counts (exp(b) = 1.89, p = .016), total (exp(b) = 1.50, p = .036) and WM PVSVF (exp(b) = 1.89, p = .005) together with lower MK-WM (exp(b) = 0.94, p = .006), mean and left ALPS (exp(b) = 0.91, p = .043; exp(b) = 0.88, p = .010 respectively) were observed in more atrophic AD patients in respect to CU. In addition, more atrophic nAD patients exhibited higher levels of AQP4 (exp(b) = 3.39, p = .002) than CU. Our results indicate significant changes in putative MRI biomarkers of GS and CSF-AQP4 levels in AD and in other neurodegenerative dementias, suggesting a close interaction between glymphatic dysfunction and neurodegeneration, particularly in the case of AD. However, the usefulness of some of these biomarkers as indirect and standalone indices of glymphatic activity may be hindered by their dependence on disease stage and structural brain damage.


Assuntos
Doença de Alzheimer , Aquaporina 4 , Imagem de Difusão por Ressonância Magnética , Sistema Glinfático , Humanos , Aquaporina 4/líquido cefalorraquidiano , Feminino , Sistema Glinfático/diagnóstico por imagem , Masculino , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/patologia , Idoso , Pessoa de Meia-Idade , Imagem de Difusão por Ressonância Magnética/métodos , Idoso de 80 Anos ou mais , Demência/diagnóstico por imagem , Demência/líquido cefalorraquidiano , Demência/patologia , Imagem de Tensor de Difusão/métodos , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/líquido cefalorraquidiano , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
2.
Brain Behav Immun ; 122: 231-240, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39153518

RESUMO

BACKGROUND: Inflammation has been proposed as a crucial player in neurodegeneration, including Frontotemporal Dementia (FTD). A few studies on sporadic FTD lead to inconclusive results, whereas large studies on genetic FTD are lacking. The aim of this study is to determine cytokine and chemokine plasma circulating levels in a large cohort of genetic FTD, collected within the GENetic Frontotemporal dementia Initiative (GENFI). METHODS: Mesoscale technology was used to analyse levels of 30 inflammatory factors in 434 plasma samples, including 94 Symptomatic Mutation carriers [(SMC); 15 with mutations in Microtubule Associated Protein Tau (MAPT) 34 in Progranulin (GRN) and 45 in Chromosome 9 Open Reading Frame (C9ORF)72], 168 Presymptomatic Mutation Carriers (PMC; 34 MAPT, 70 GRN and 64 C9ORF72) and 173 Non-carrier Controls (NC)]. RESULTS: The following cytokines were significantly upregulated (P<0.05) in MAPT and GRN SMC versus NC: Tumor Necrosis Factor (TNF)α, Interleukin (IL)-7, IL-15, IL-16, IL-17A. Moreover, only in GRN SMC, additional factors were upregulated, including: IL-1ß, IL-6, IL-10, IL-12/IL-23p40, eotaxin, eotaxin-3, Interferon γ-induced Protein (IP-10), Monocyte Chemotactic Protein (MCP)4. On the contrary, IL-1α levels were decreased in SMC compared with NC. Significantly decreased levels of this cytokine were also found in PMC, independent of the type of mutation. In SMC, no correlations between disease duration and cytokine and chemokine levels were found. Considering NfL and GFAP levels, as expected, significant increases were observed in SMC as compared to NC. These differences in mean values remain significant even when stratifying symptomatic patients by the mutated gene (P<0.0001). Considering instead the levels of NfL, GFAP, and the altered inflammatory molecules, no significant correlations emerged. CONCLUSION: We showed that inflammatory proteins are upregulated in MAPT and GRN SMC, with some specific factors altered in GRN only, whereas no changes were seen in C9ORF72 carriers. Notably, only IL-1α levels were decreased in both SMC and PMC, independent of the type of causal mutation, suggesting common modifications occurring in the preclinical phase of the disease.


Assuntos
Citocinas , Demência Frontotemporal , Inflamação , Mutação , Progranulinas , Proteínas tau , Humanos , Demência Frontotemporal/genética , Demência Frontotemporal/sangue , Feminino , Masculino , Pessoa de Meia-Idade , Progranulinas/genética , Progranulinas/sangue , Citocinas/sangue , Citocinas/genética , Proteínas tau/sangue , Proteínas tau/genética , Idoso , Inflamação/genética , Inflamação/sangue , Proteína C9orf72/genética , Quimiocinas/sangue , Quimiocinas/genética , Estudos de Coortes , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Heterozigoto
3.
Int J Mol Sci ; 24(19)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37834197

RESUMO

Extracellular vesicles (EVs) are nanosized vesicles released by almost all body tissues, representing important mediators of cellular communication, and are thus promising candidate biomarkers for neurodegenerative diseases like Alzheimer's disease (AD). The aim of the present study was to isolate total EVs from plasma and characterize their microRNA (miRNA) contents in AD patients. We isolated total EVs from the plasma of all recruited subjects using ExoQuickULTRA exosome precipitation solution (SBI). Subsequently, circulating total EVs were characterized using Nanosight nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), and Western blotting. A panel of 754 miRNAs was determined with RT-qPCR using TaqMan OpenArray technology in a QuantStudio 12K System (Thermo Fisher Scientific). The results demonstrated that plasma EVs showed widespread deregulation of specific miRNAs (miR-106a-5p, miR-16-5p, miR-17-5p, miR-195-5p, miR-19b-3p, miR-20a-5p, miR-223-3p, miR-25-3p, miR-296-5p, miR-30b-5p, miR-532-3p, miR-92a-3p, and miR-451a), some of which were already known to be associated with neurological pathologies. A further validation analysis also confirmed a significant upregulation of miR-16-5p, miR-25-3p, miR-92a-3p, and miR-451a in prodromal AD patients, suggesting these dysregulated miRNAs are involved in the early progression of AD.


Assuntos
Doença de Alzheimer , Exossomos , Vesículas Extracelulares , MicroRNAs , Humanos , Doença de Alzheimer/genética , MicroRNAs/genética , Biomarcadores , Vesículas Extracelulares/genética , Exossomos/genética
4.
Int J Mol Sci ; 23(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35955622

RESUMO

Primary progressive aphasia (PPA) damages the parts of the brain that control speech and language. There are three clinical PPA variants: nonfluent/agrammatic (nfvPPA), logopenic (lvPPA) and semantic (svPPA). The pathophysiology underlying PPA variants is not fully understood, including the role of micro (mi)RNAs which were previously shown to play a role in several neurodegenerative diseases. Using a two-step analysis (array and validation through real-time PCR), we investigated the miRNA expression pattern in serum from 54 PPA patients and 18 controls. In the svPPA cohort, we observed a generalized upregulation of miRNAs with miR-106b-5p and miR-133a-3p reaching statistical significance (miR-106b-5p: 2.69 ± 0.89 mean ± SD vs. 1.18 ± 0.28, p < 0.0001; miR-133a-3p: 2.09 ± 0.10 vs. 0.74 ± 0.11 mean ± SD, p = 0.0002). Conversely, in lvPPA, the majority of miRNAs were downregulated. GO enrichment and KEGG pathway analyses revealed that target genes of both miRNAs are involved in pathways potentially relevant for the pathogenesis of neurodegenerative diseases. This is the first study that investigates the expression profile of circulating miRNAs in PPA variant patients. We identified a specific miRNA expression profile in svPPA that could differentiate this pathological condition from other PPA variants. Nevertheless, these preliminary results need to be confirmed in a larger independent cohort.


Assuntos
Afasia Primária Progressiva , MicroRNAs , Afasia Primária Progressiva/genética , Afasia Primária Progressiva/patologia , Encéfalo/patologia , Humanos , Idioma , MicroRNAs/genética , Semântica
5.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36499048

RESUMO

Frontotemporal Dementia (FTD) represents a highly heritable neurodegenerative disorder. Most of the heritability is caused by autosomal dominant mutations in the Microtubule-Associated Protein Tau (MAPT), Progranulin (GRN), and the pathologic exanucleotide expansion of C9ORF72 genes. At the pathological level, either the tau or the TAR DNA-binding protein (TDP-43) account for almost all cases of FTD. Pathogenic mechanisms are just arising, and the emerging role of non-coding RNAs (ncRNAs), such as microRNAs (miRNA) and long non-coding RNAs (lncRNAs), have become increasingly evident. Using specific arrays, an exploratory analysis testing the expression levels of 84 miRNAs and 84 lncRNAs has been performed in a population consisting of 24 genetic FTD patients (eight GRN, eight C9ORF72, and eight MAPT mutation carriers), eight sporadic FTD patients, and eight healthy controls. The results showed a generalized ncRNA downregulation in patients carrying GRN and C9ORF72 when compared with the controls, with statistically significant results for the following miRNAs: miR-155-5p (Fold Change FC: 0.45, p = 0.037 FDR = 0.52), miR-15a-5p (FC: 0.13, p = 0.027, FDR = 1), miR-222-3p (FC: 0.13, p = 0.027, FDR = 0.778), miR-140-3p (FC: 0.096, p = 0.034, FRD = 0.593), miR-106b-5p (FC: 0.13, p = 0.02, FDR = 0.584) and an upregulation solely for miR-124-3p (FC: 2.1, p = 0.01, FDR = 0.893). Conversely, MAPT mutation carriers showed a generalized robust upregulation in several ncRNAs, specifically for miR-222-3p (FC: 22.3, p = 7 × 10-6, FDR = 0.117), miR-15a-5p (FC: 30.2, p = 0.008, FDR = 0.145), miR-27a-3p (FC: 27.8, p = 6 × 10-6, FDR = 0.0005), miR-223-3p (FC: 18.9, p = 0.005, FDR = 0.117), and miR-16-5p (FC: 10.9, p = 5.26 × 10-5, FDR = 0.001). These results suggest a clear, distinctive pattern of dysregulation among ncRNAs and specific enrichment gene pathways between mutations associated with the TDP-43 and tau pathologies. Nevertheless, these preliminary results need to be confirmed in a larger independent cohort.


Assuntos
Demência Frontotemporal , MicroRNAs , Doença de Pick , RNA Longo não Codificante , Humanos , Proteína C9orf72/genética , Demência Frontotemporal/metabolismo , MicroRNAs/genética , Mutação , Doença de Pick/genética , Progranulinas/genética , RNA Longo não Codificante/genética , Proteínas tau/genética
6.
Eur J Nucl Med Mol Imaging ; 46(2): 280-287, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30343433

RESUMO

PURPOSE: The disease course of multiple sclerosis (MS) is unpredictable, and reliable prognostic biomarkers are needed. Positron emission tomography (PET) with ß-amyloid tracers is a promising tool for evaluating white matter (WM) damage and repair. Our aim was to investigate amyloid uptake in damaged (DWM) and normal-appearing WM (NAWM) of MS patients, and to evaluate possible correlations between cerebrospinal fluid (CSF) ß-amyloid1-42 (Aß) levels, amyloid tracer uptake, and brain volumes. METHODS: Twelve MS patients were recruited and divided according to their disease activity into active and non-active groups. All participants underwent neurological examination, neuropsychological testing, lumbar puncture, brain magnetic resonance (MRI) imaging, and 18F-florbetapir PET. Aß levels were determined in CSF samples from all patients. MRI and PET images were co-registered, and mean standardized uptake values (SUV) were calculated for each patient in the NAWM and in the DWM. To calculate brain volumes, brain segmentation was performed using statistical parametric mapping software. Nonparametric statistical analyses for between-group comparisons and regression analyses were conducted. RESULTS: We found a lower SUV in DWM compared to NAWM (p < 0.001) in all patients. Decreased NAWM-SUV was observed in the active compared to non-active group (p < 0.05). Considering only active patients, NAWM volume correlated with NAWM-SUV (p = 0.01). Interestingly, CSF Aß concentration was a predictor of both NAWM-SUV (r = 0.79; p = 0.01) and NAWM volume (r = 0.81, p = 0.01). CONCLUSIONS: The correlation between CSF Aß levels and NAWM-SUV suggests that the predictive role of ß-amyloid may be linked to early myelin damage and may reflect disease activity and clinical progression.


Assuntos
Peptídeos beta-Amiloides/líquido cefalorraquidiano , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/patologia , Tomografia por Emissão de Pósitrons , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Adulto , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/metabolismo , Tomografia por Emissão de Pósitrons/normas , Valores de Referência , Substância Branca/metabolismo , Adulto Jovem
7.
Neurodegener Dis ; 16(3-4): 172-8, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26613252

RESUMO

INTRODUCTION: Brain iron homeostasis dysregulation has been widely related to neurodegeneration. In particular, human haemochromatosis protein (HFE) is involved in iron metabolism, and HFE H63D polymorphism has been related to the risk of amyotrophic lateral sclerosis and Alzheimer's disease. Recently, iron accumulation in the basal ganglia of frontotemporal lobar degeneration (FTLD) patients has been described. OBJECTIVE: To explore the relationship between HFE genetic variation and demographic, clinical and imaging characteristics in a large cohort of FTLD patients. METHODS: A total of 110 FTLD patients underwent neuropsychological and imaging evaluation and blood sampling for HFE polymorphism determination. HFE H63D polymorphism was considered in the present study. Two imaging approaches were applied to evaluate the effect of HFE genetic variation on brain atrophy, namely voxel-based morphometry and region of interest-based probabilistic approach (SPM8; Wellcome Trust Centre for Neuroimaging). RESULTS: FTLD patients carrying the D* genotype (H/D or D/D) showed greater atrophy in the basal ganglia, bilaterally, compared to H/H carriers (x, y, z: -22, -4, 0; T = 3.45; cluster size: 33 voxels, x, y, z: 24, 4, -2; T = 3.38; cluster size: 36 voxels). The former group had even more pronounced behavioural symptoms, as defined by the Frontal Behavioural Inventory total scores. CONCLUSIONS: Our data suggest that H63D polymorphism could represent a disease-modifying gene in FTLD, fostering iron deposition in the basal ganglia. This suggests a new possible mechanism of FTLD-associated neurodegeneration.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Degeneração Lobar Frontotemporal/diagnóstico por imagem , Degeneração Lobar Frontotemporal/metabolismo , Proteína da Hemocromatose/genética , Ferro/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Atrofia , Encéfalo/patologia , Estudos de Coortes , Feminino , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/psicologia , Frequência do Gene , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/metabolismo , Substância Cinzenta/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Testes Neuropsicológicos , Tamanho do Órgão , Projetos Piloto , Polimorfismo Genético
9.
Int J Mol Sci ; 16(1): 1385-94, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25580532

RESUMO

We analysed the expression levels of 84 key genes involved in the regulated degradation of cellular protein by the ubiquitin-proteasome system in peripheral cells from patients with frontotemporal dementia (FTD) due to C9ORF72 and GRN mutations, as compared with sporadic FTD and age-matched controls. A SABiosciences PCR array was used to investigate the transcription profile in a discovery population consisting of six patients each in C9ORF72, GRN, sporadic FTD and age-matched control groups. A generalized down-regulation of gene expression compared with controls was observed in C9ORF72 expansion carriers and sporadic FTD patients. In particular, in both groups, four genes, UBE2I, UBE2Q1, UBE2E1 and UBE2N, were down-regulated at a statistically significant (p < 0.05) level. All of them encode for members of the E2 ubiquitin-conjugating enzyme family. In GRN mutation carriers, no statistically significant deregulation of ubiquitination pathway genes was observed, except for the UBE2Z gene, which displays E2 ubiquitin conjugating enzyme activity, and was found to be statistically significant up-regulated (p = 0.006). These preliminary results suggest that the proteasomal degradation pathway plays a role in the pathogenesis of FTD associated with TDP-43 pathology, although different proteins are altered in carriers of GRN mutations as compared with carriers of the C9ORF72 expansion.


Assuntos
Demência Frontotemporal/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas/genética , Idoso , Proteína C9orf72 , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Feminino , Demência Frontotemporal/patologia , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Progranulinas , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitinação
10.
Bipolar Disord ; 16(7): 769-72, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24499389

RESUMO

OBJECTIVE: Recent data have shown that genetic variability in the progranulin (GRN) gene may contribute to the susceptibility to developing bipolar disorder (BD). However, in regard to patients with BD, no information is available on the role of genetic variability and plasma progranulin levels in different types of this disorder. METHODS: In this study, we performed an association analysis of GRN in an Italian population consisting of 134 patients with BD and 232 controls to evaluate progranulin plasma levels. RESULTS: The presence of the polymorphic variant of the rs5848 single nucleotide polymorphism is protective for the development of bipolar I disorder (BD-I) (odds ratio = 0.55, 95% confidence interval: 0.33-0.93; p = 0.024) but not bipolar II disorder (BD-II) (p > 0.05). In addition, plasma progranulin levels are significantly decreased in BD [mean ± standard deviation (SD) 112 ± 35 versus 183 ± 93 ng/mL in controls; p < 0.001]. CONCLUSIONS: Regarding the influence of GRN variability on BD susceptibility, the predisposing genetic background differs between BD-I and BD-II, possibly implying that pathogenic mechanisms differ between the two subtypes of BD.


Assuntos
Transtorno Bipolar/genética , Predisposição Genética para Doença , Peptídeos e Proteínas de Sinalização Intercelular/genética , Polimorfismo de Nucleotídeo Único/genética , Adulto , Idoso , Transtorno Bipolar/sangue , Transtorno Bipolar/classificação , Estudos de Casos e Controles , Feminino , Genótipo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/sangue , Itália , Masculino , Pessoa de Meia-Idade , Razão de Chances , Progranulinas , Adulto Jovem
11.
Neuroimmunomodulation ; 21(2-3): 79-87, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24557039

RESUMO

Immune activation and inflammation, likely triggered by amyloid-beta (Aß) deposition, play a remarkable role in the pathogenesis of Alzheimer's disease (AD), which is the most frequent cause of dementia in the elderly. The principal cellular elements of the brain innate immune system likely to be involved in such processes are microglia. In an attempt to search for new disease-modifying drugs, the immune system has been addressed, with the aim of removing deposition of Aß or tau by developing vaccines and humanized monoclonal antibodies. The aim of this review is to summarize the current evidence regarding the role played by microglia and inflammatory molecules in the pathogenesis of AD. In addition, we will discuss the main active and passive immunotherapeutic approaches.


Assuntos
Doença de Alzheimer/imunologia , Imunidade Inata/imunologia , Inflamação/imunologia , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Animais , Humanos , Inflamação/patologia , Inflamação/fisiopatologia
12.
J Alzheimers Dis ; 100(s1): S187-S196, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39121124

RESUMO

Background: Long non-coding RNAs (lncRNAs) play crucial roles in gene regulation and are implicated in neurodegenerative diseases, including frontotemporal dementia (FTD). However, their expression patterns and potential as biomarkers in genetic FTD involving Chromosome 9 Open Reading Frame (C9ORF72), Microtubule Associated Protein Tau (MAPT), and Progranulin (GRN) genes are not well understood. Objective: This study aimed to profile the expression levels of lncRNAs in peripheral blood mononuclear cells collected within the GENetic Frontotemporal dementia Initiative (GENFI). Methods: Fifty-three lncRNAs were analyzed with the OpenArray Custom panel, in 131 patients with mutations in C9ORF72, MAPT, and GRN, including 68 symptomatic mutation carriers (SMC) and 63 presymptomatic mutation carriers (PMC), compared with 40 non-carrier controls (NC). Results: Thirty-eight lncRNAs were detectable; the relative expression of NEAT1 and NORAD was significantly higher in C9ORF72 SMC as compared with NC. GAS5 expression was instead significantly lower in the GRN group versus NC. MAPT carriers showed no significant deregulations. No significant differences were observed in PMC. Disease duration did not correlate with lncRNA expression. Conclusions: NEAT1 and NORAD are upregulated in C9ORF72 SMC and GAS5 levels are downregulated in GRN SMC, underlining lncRNAs' relevance in FTD and their potential for biomarker development. Further validation and mechanistic studies are crucial for clinical implications.


Assuntos
Proteína C9orf72 , Demência Frontotemporal , Progranulinas , RNA Longo não Codificante , Proteínas tau , Humanos , Demência Frontotemporal/genética , RNA Longo não Codificante/genética , Feminino , Masculino , Pessoa de Meia-Idade , Proteína C9orf72/genética , Progranulinas/genética , Proteínas tau/genética , Idoso , Mutação , Biomarcadores/sangue
13.
Front Neurol ; 15: 1284459, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38356886

RESUMO

Introduction: High repeat expansion (HRE) alleles in C9orf72 have been linked to both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD); ranges for intermediate allelic expansions have not been defined yet, and clinical interpretation of molecular data lacks a defined genotype-phenotype association. In this study, we provide results from a large multicenter epidemiological study reporting the distribution of C9orf72 repeats in healthy elderly from the Italian population. Methods: A total of 967 samples were collected from neurologically evaluated healthy individuals over 70 years of age in the 13 institutes participating in the RIN (IRCCS Network of Neuroscience and Neurorehabilitation) based in Italy. All samples were genotyped using the AmplideXPCR/CE C9orf72 Kit (Asuragen, Inc.), using standardized protocols that have been validated through blind proficiency testing. Results: All samples carried hexanucleotide G4C2 expansion alleles in the normal range. All samples were characterized by alleles with less than 25 repeats. In particular, 93.7% of samples showed a number of repeats ≤10, 99.9% ≤20 repeats, and 100% ≤25 repeats. Conclusion: This study describes the distribution of hexanucleotide G4C2 expansion alleles in an Italian healthy population, providing a definition of alleles associated with the neurological healthy phenotype. Moreover, this study provides an effective model of federation between institutes, highlighting the importance of sharing genomic data and standardizing analysis techniques, promoting translational research. Data derived from the study may improve genetic counseling and future studies on ALS/FTD.

14.
Alzheimers Res Ther ; 16(1): 66, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38539243

RESUMO

BACKGROUND: Pathogenic heterozygous mutations in the progranulin gene (GRN) are a key cause of frontotemporal dementia (FTD), leading to significantly reduced biofluid concentrations of the progranulin protein (PGRN). This has led to a number of ongoing therapeutic trials aiming to treat this form of FTD by increasing PGRN levels in mutation carriers. However, we currently lack a complete understanding of factors that affect PGRN levels and potential variation in measurement methods. Here, we aimed to address this gap in knowledge by systematically reviewing published literature on biofluid PGRN concentrations. METHODS: Published data including biofluid PGRN concentration, age, sex, diagnosis and GRN mutation were collected for 7071 individuals from 75 publications. The majority of analyses (72%) had focused on plasma PGRN concentrations, with many of these (56%) measured with a single assay type (Adipogen) and so the influence of mutation type, age at onset, sex, and diagnosis were investigated in this subset of the data. RESULTS: We established a plasma PGRN concentration cut-off between pathogenic mutation carriers and non-carriers of 74.8 ng/mL using the Adipogen assay based on 3301 individuals, with a CSF concentration cut-off of 3.43 ng/mL. Plasma PGRN concentration varied by GRN mutation type as well as by clinical diagnosis in those without a GRN mutation. Plasma PGRN concentration was significantly higher in women than men in GRN mutation carriers (p = 0.007) with a trend in non-carriers (p = 0.062), and there was a significant but weak positive correlation with age in both GRN mutation carriers and non-carriers. No significant association was seen with weight or with TMEM106B rs1990622 genotype. However, higher plasma PGRN levels were seen in those with the GRN rs5848 CC genotype in both GRN mutation carriers and non-carriers. CONCLUSIONS: These results further support the usefulness of PGRN concentration for the identification of the large majority of pathogenic mutations in the GRN gene. Furthermore, these results highlight the importance of considering additional factors, such as mutation type, sex and age when interpreting PGRN concentrations. This will be particularly important as we enter the era of trials for progranulin-associated FTD.


Assuntos
Demência Frontotemporal , Masculino , Humanos , Feminino , Progranulinas/genética , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Virulência , Mutação/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética
15.
Mult Scler ; 19(14): 1938-42, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24277735

RESUMO

Emerging evidence underlines the importance of micro(mi)RNAs in the pathogenesis of multiple sclerosis (MS). Free-circulating miRNAs were investigated in serum from MS patients compared to controls. Statistically significant decreased levels of miR-15b, miR-23a and miR-223 were observed in MS patients (p < 0.05). Results were validated and replicated in two further independent MS populations. A direct correlation between miRNA levels and the EDSS score was determined in PPMS (p < 0.007). The generalized trend toward miRNA down-regulation could result in over-expression of target genes involved in disease pathogenesis. Circulating miRNA profiling could thus represent a new avenue to identify easily detectable disease biomarkers.


Assuntos
MicroRNAs/sangue , Esclerose Múltipla Crônica Progressiva/genética , Esclerose Múltipla Recidivante-Remitente/genética , Adulto , Estudos de Casos e Controles , Avaliação da Deficiência , Regulação para Baixo , Feminino , Marcadores Genéticos , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Crônica Progressiva/sangue , Esclerose Múltipla Crônica Progressiva/diagnóstico , Esclerose Múltipla Recidivante-Remitente/sangue , Esclerose Múltipla Recidivante-Remitente/diagnóstico , Valor Preditivo dos Testes
16.
Int J Mol Sci ; 14(3): 4375-84, 2013 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-23439547

RESUMO

Evidence underlines the importance of microRNAs (miRNAs) in the pathogenesis of multiple sclerosis (MS). Based on the fact that miRNAs are present in human biological fluids, we previously showed that miR-223, miR-23a and miR-15b levels were downregulated in the sera of MS patients versus controls. Here, the expression levels of these candidate miRNAs were determined in peripheral blood mononuclear cells (PBMCs) and the serum of MS patients, in addition to three genotyped single nucleotide polymorphisms (SNPs). Mapping in the genomic regions of miR-223, miR-23a and miR-15b genes, 399 cases and 420 controls were tested. Expression levels of miR-223 and miR-23a were altered in PBMCs from MS patients versus controls. Conversely, there were no differences in the expression levels of miR-15b. A significantly decreased genotypic frequency of miR-223 rs1044165 T/T genotype was observed in MS patients. Moreover, the allelic frequency of miR-23a rs3745453 C allele was significantly increased in patients versus controls. In contrast, there were no differences in the distribution of miR-15b SNP. In conclusion, our results suggest that miR-223 and miR-23a could play a role in the pathogenesis of MS. Moreover, miR-223 rs1044165 polymorphism likely acts as a protective factor, while miR-23a rs3745453 variant seems to act as a risk factor for MS.

17.
J Alzheimers Dis ; 94(3): 1225-1231, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37393504

RESUMO

BACKGROUND: The longevity gene Klotho (KL) was recently associated with neurodegenerative diseases including Alzheimer's disease (AD). Its role in the brain has not been completely elucidated, although evidence suggests that KL-VS heterozygosity is associated with a reduced risk of AD in Apolipoprotein E ɛ4 carriers. Conversely, no data about genetic association with frontotemporal dementia (FTD) are available so far. OBJECTIVE: To investigate the involvement of KL in AD and FTD by the determination of the genetic frequency of KL-VS variant and the expression analysis of KL gene. METHODS: A population consisting of 438 patients and 240 age-matched controls was enrolled for the study. KL-VS and APOE genotypes were assessed by allelic discrimination through a QuantStudio 12K system. KL gene expression analysis was performed in a restricted cohort of patients consisting of 43 AD patients, 41 FTD patients and 19 controls. KL gene expression was assessed in peripheral blood mononuclear cells with specific TaqMan assay. Statistical analysis was performed using GraphPad 9 Prims software. RESULTS: KL-VS frequency was comparable to the ones found in literature and no differences were found in both allelic and genotypic frequencies between patients and controls were found. Conversely, KL expression levels were significantly lower in AD and FTD patients compared with controls (mean fold regulation - 4.286 and - 6.561 versus controls in AD and FTD, respectively, p = 0.0037). CONCLUSION: This is the first study investigating KL in FTD. We showed a decreased expression of the gene in AD and FTD, independent of the genotype, suggesting a role of Klotho in common steps during neurodegeneration.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Humanos , Doença de Alzheimer/genética , Demência Frontotemporal/genética , Expressão Gênica , Genótipo , Leucócitos Mononucleares
18.
Front Aging Neurosci ; 15: 1191714, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37547746

RESUMO

Background: Perivascular spaces (PVS) are fluid-filled compartments that dilate in response to many different conditions. A high burden of enlarged PVS (EPVS) in the centrum semiovale (CSO) has been linked to neurodegeneration. Moreover, an increase in cerebrospinal fluid (CSF) levels of aquaporin-4 (AQP4), a water channel expressed on PVS-bounding astrocytes, has been described in patients with neurodegenerative dementia. Our aim was to investigate the relationship between neurodegenerative diseases and two putative glymphatic system biomarkers: AQP4 and EPVS. Methods: We included 70 individuals, 54 patients with neurodegenerative diseases and 16 subjects with non-degenerative conditions. EPVS were visually quantified on MRI-scans applying Paradise's scale. All subjects underwent lumbar puncture for the measurement of AQP4 levels in the cerebrospinal fluid (CSF). CSF levels of amyloid-ß-1-42, phosphorylated and total tau (tTau) were also measured. Linear regression analyses were adjusted for age, sex, education and disease duration, after excluding outliers. Results: Cerebrospinal fluid (CSF)-AQP4 levels were independent predictors of total (ß = 0.28, standard error [SE] = 0.08, p = 0.001), basal ganglia (ß = 0.20, SE = 0.08, p = 0.009) and centrum semiovale EPVS (ß = 0.37, SE = 0.12, p = 0.003). tTau levels predicted CSO-EPVS (ß = 0.30, SE = 0.15, p = 0.046). Moreover, increased levels of AQP4 were strongly associated with higher levels of tTau in the CSF (ß = 0.35, SE = 0.13, p = 0.008). Conclusion: We provide evidence that CSO-EPVS and CSF-AQP4 might be clinically meaningful biomarkers of glymphatic dysfunction and associated neurodegeneration.

20.
Biomedicines ; 10(9)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36140362

RESUMO

Alzheimer's disease (AD) is the most common cause of neurodegenerative dementia, whilst Parkinson's disease (PD) is a neurodegenerative movement disorder. These two neurodegenerative disorders share the accumulation of toxic proteins as a pathological hallmark. The lack of definitive disease-modifying treatments for these neurogenerative diseases has led to the hypothesis of new pathogenic mechanisms to target and design new potential therapeutic approaches. The recent observation that the glymphatic system is supposed to be responsible for the movement of cerebrospinal fluid into the brain and clearance of metabolic waste has led to study its involvement in the pathogenesis of these classic proteinopathies. Aquaporin-4 (AQP4), a water channel located in the endfeet of astrocyte membrane, is considered a primary driver of the glymphatic clearance system, and defective AQP4-mediated glymphatic drainage has been linked to proteinopathies. The objective of the present review is to present the recent body of knowledge that links the glymphatic system to the pathogenesis of AD and PD disease and other lifestyle factors such as sleep deprivation and exercise that may influence glymphatic system function. We will also focus on the potential neuroimaging approaches that could identify a neuroimaging marker to detect glymphatic system changes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA