Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35217617

RESUMO

Circadian clocks are timing systems that rhythmically adjust physiology and metabolism to the 24-h day-night cycle. Eukaryotic circadian clocks are based on transcriptional-translational feedback loops (TTFLs). Yet TTFL-core components such as Frequency (FRQ) in Neurospora and Periods (PERs) in animals are not conserved, leaving unclear how a 24-h period is measured on the molecular level. Here, we show that CK1 is sufficient to promote FRQ and mouse PER2 (mPER2) hyperphosphorylation on a circadian timescale by targeting a large number of low-affinity phosphorylation sites. Slow phosphorylation kinetics rely on site-specific recruitment of Casein Kinase 1 (CK1) and access of intrinsically disordered segments of FRQ or mPER2 to bound CK1 and on CK1 autoinhibition. Compromising CK1 activity and substrate binding affects the circadian clock in Neurospora and mammalian cells, respectively. We propose that CK1 and the clock proteins FRQ and PERs form functionally equivalent, phospho-based timing modules in the core of the circadian clocks of fungi and animals.


Assuntos
Proteínas CLOCK/metabolismo , Caseína Quinase I/metabolismo , Relógios Circadianos , Neurospora crassa/metabolismo , Animais , Cinética , Camundongos , Fosforilação
2.
FEBS Lett ; 596(15): 1881-1891, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35735764

RESUMO

Timing by the circadian clock of Neurospora is associated with hyperphosphorylation of frequency (FRQ), which depends on anchoring casein kinase 1a (CK1a) to FRQ. It is not known how CK1a is anchored so that approximately 100 sites in FRQ can be targeted. Here, we identified two regions in CK1a, p1 and p2, that are required for anchoring to FRQ. Mutation of p1 or p2 impairs progressive hyperphosphorylation of FRQ. A p1-mutated strain is viable but its circadian clock is non-functional, whereas a p2-mutated strain is non-viable. Our data suggest that p1 and potentially also p2 in CK1a provide an interface for interaction with FRQ. Anchoring via p1-p2 leaves the active site of CK1a accessible for phosphorylation of FRQ at multiple sites.


Assuntos
Relógios Circadianos , Neurospora crassa , Neurospora , Caseína Quinases/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Proteínas Fúngicas/metabolismo , Neurospora/genética , Neurospora/metabolismo , Neurospora crassa/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA