Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pflugers Arch ; 476(4): 611-622, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38514581

RESUMO

Low pH in the gut is associated with severe inflammation, fibrosis, and colorectal cancer (CRC) and is a hallmark of active inflammatory bowel disease (IBD). Subsequently, pH-sensing mechanisms are of interest for the understanding of IBD pathophysiology. Tissue hypoxia and acidosis-two contributing factors to disease pathophysiology-are linked to IBD, and understanding their interplay is highly relevant for the development of new therapeutic options. One member of the proton-sensing G protein-coupled receptor (GPCR) family, GPR65 (T-cell death-associated gene 8, TDAG8), was identified as a susceptibility gene for IBD in a large genome-wide association study. In response to acidic extracellular pH, GPR65 induces an anti-inflammatory response, whereas the two other proton-sensing receptors, GPR4 and GPR68 (ovarian cancer G protein-coupled receptor 1, OGR1), mediate pro-inflammatory responses. Here, we review the current knowledge on the role of these proton-sensing receptors in IBD and IBD-associated fibrosis and cancer, as well as colitis-associated cancer (CAC). We also describe emerging small molecule modulators of these receptors as therapeutic opportunities for the treatment of IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Humanos , Prótons , Estudo de Associação Genômica Ampla , Receptores Acoplados a Proteínas G , Concentração de Íons de Hidrogênio , Fibrose
2.
Int Wound J ; 21(4): e14447, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38149752

RESUMO

A limited understanding of the pathology underlying chronic wounds has hindered the development of effective diagnostic markers and pharmaceutical interventions. This study aimed to elucidate the molecular composition of various common chronic ulcer types to facilitate drug discovery strategies. We conducted a comprehensive analysis of leg ulcers (LUs), encompassing venous and arterial ulcers, foot ulcers (FUs), pressure ulcers (PUs), and compared them with surgical wound healing complications (WHCs). To explore the pathophysiological mechanisms and identify similarities or differences within wounds, we dissected wounds into distinct subregions, including the wound bed, border, and peri-wound areas, and compared them against intact skin. By correlating histopathology, RNA sequencing (RNA-Seq), and immunohistochemistry (IHC), we identified unique genes, pathways, and cell type abundance patterns in each wound type and subregion. These correlations aim to aid clinicians in selecting targeted treatment options and informing the design of future preclinical and clinical studies in wound healing. Notably, specific genes, such as PITX1 and UPP1, exhibited exclusive upregulation in LUs and FUs, potentially offering significant benefits to specialists in limb preservation and clinical treatment decisions. In contrast, comparisons between different wound subregions, regardless of wound type, revealed distinct expression profiles. The pleiotropic chemokine-like ligand GPR15L (C10orf99) and transmembrane serine proteases TMPRSS11A/D were significantly upregulated in wound border subregions. Interestingly, WHCs exhibited a nearly identical transcriptome to PUs, indicating clinical relevance. Histological examination revealed blood vessel occlusions with impaired angiogenesis in chronic wounds, alongside elevated expression of genes and immunoreactive markers related to blood vessel and lymphatic epithelial cells in wound bed subregions. Additionally, inflammatory and epithelial markers indicated heightened inflammatory responses in wound bed and border subregions and reduced wound bed epithelialization. In summary, chronic wounds from diverse anatomical sites share common aspects of wound pathophysiology but also exhibit distinct molecular differences. These unique molecular characteristics present promising opportunities for drug discovery and treatment, particularly for patients suffering from chronic wounds. The identified diagnostic markers hold the potential to enhance preclinical and clinical trials in the field of wound healing.


Assuntos
Pé Diabético , Úlcera da Perna , Úlcera por Pressão , Lesões dos Tecidos Moles , Humanos , Úlcera por Pressão/genética , Úlcera por Pressão/terapia , Pé Diabético/terapia , Úlcera da Perna/terapia , Expressão Gênica , Supuração
3.
PLoS One ; 19(3): e0283060, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38527054

RESUMO

Acidosis is one of the hallmarks of demyelinating central nervous system (CNS) lesions in multiple sclerosis (MS). The response to acidic pH is primarily mediated by a family of G protein-coupled proton-sensing receptors: OGR1, GPR4 and TDAG8. These receptors are inactive at alkaline pH, reaching maximal activation at acidic pH. Genome-wide association studies have identified a locus within the TDAG8 gene associated with several autoimmune diseases, including MS. Accordingly, we here found that expression of TDAG8, as opposed to GPR4 or OGR1, is upregulated in MS plaques. This led us to investigate the expression of TDAG8 in oligodendrocytes using mouse and human in vitro and in vivo models. We observed significant upregulation of TDAG8 in human MO3.13 oligodendrocytes during maturation and in response to acidic conditions. However, its deficiency did not impact normal myelination in the mouse CNS, and its expression remained unaltered under demyelinating conditions in mouse organotypic cerebellar slices. Notably, our data revealed no expression of TDAG8 in primary mouse oligodendrocyte progenitor cells (OPCs), in contrast to its expression in primary human OPCs. Our investigations have revealed substantial species differences in the expression of proton-sensing receptors in oligodendrocytes, highlighting the limitations of the employed experimental models in fully elucidating the role of TDAG8 in myelination and oligodendrocyte biology. Consequently, the study does not furnish robust evidence for the role of TDAG8 in such processes. Nonetheless, our findings tentatively point towards a potential association between TDAG8 and myelination processes in humans, hinting at a potential link between TDAG8 and the pathophysiology of MS and warrants further research.


Assuntos
Esclerose Múltipla , Oligodendroglia , Receptores Acoplados a Proteínas G , Animais , Humanos , Camundongos , Estudo de Associação Genômica Ampla , Concentração de Íons de Hidrogênio , Esclerose Múltipla/genética , Doenças Neuroinflamatórias , Prótons , Receptores Acoplados a Proteínas G/metabolismo , Oligodendroglia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA