Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brief Bioinform ; 22(1): 146-163, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-31838514

RESUMO

MOTIVATION: Annotation tools are applied to build training and test corpora, which are essential for the development and evaluation of new natural language processing algorithms. Further, annotation tools are also used to extract new information for a particular use case. However, owing to the high number of existing annotation tools, finding the one that best fits particular needs is a demanding task that requires searching the scientific literature followed by installing and trying various tools. METHODS: We searched for annotation tools and selected a subset of them according to five requirements with which they should comply, such as being Web-based or supporting the definition of a schema. We installed the selected tools (when necessary), carried out hands-on experiments and evaluated them using 26 criteria that covered functional and technical aspects. We defined each criterion on three levels of matches and a score for the final evaluation of the tools. RESULTS: We evaluated 78 tools and selected the following 15 for a detailed evaluation: BioQRator, brat, Catma, Djangology, ezTag, FLAT, LightTag, MAT, MyMiner, PDFAnno, prodigy, tagtog, TextAE, WAT-SL and WebAnno. Full compliance with our 26 criteria ranged from only 9 up to 20 criteria, which demonstrated that some tools are comprehensive and mature enough to be used on most annotation projects. The highest score of 0.81 was obtained by WebAnno (of a maximum value of 1.0).


Assuntos
Biologia Computacional/normas , Curadoria de Dados/normas , Biologia Computacional/métodos , Curadoria de Dados/métodos , Software/normas
2.
BMC Bioinformatics ; 20(1): 429, 2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31419935

RESUMO

BACKGROUND: Diagnosis and treatment decisions in cancer increasingly depend on a detailed analysis of the mutational status of a patient's genome. This analysis relies on previously published information regarding the association of variations to disease progression and possible interventions. Clinicians to a large degree use biomedical search engines to obtain such information; however, the vast majority of scientific publications focus on basic science and have no direct clinical impact. We develop the Variant-Information Search Tool (VIST), a search engine designed for the targeted search of clinically relevant publications given an oncological mutation profile. RESULTS: VIST indexes all PubMed abstracts and content from ClinicalTrials.gov. It applies advanced text mining to identify mentions of genes, variants and drugs and uses machine learning based scoring to judge the clinical relevance of indexed abstracts. Its functionality is available through a fast and intuitive web interface. We perform several evaluations, showing that VIST's ranking is superior to that of PubMed or a pure vector space model with regard to the clinical relevance of a document's content. CONCLUSION: Different user groups search repositories of scientific publications with different intentions. This diversity is not adequately reflected in the standard search engines, often leading to poor performance in specialized settings. We develop a search engine for the specific case of finding documents that are clinically relevant in the course of cancer treatment. We believe that the architecture of our engine, heavily relying on machine learning algorithms, can also act as a blueprint for search engines in other, equally specific domains. VIST is freely available at https://vist.informatik.hu-berlin.de/.


Assuntos
Neoplasias/patologia , Medicina de Precisão , Ferramenta de Busca , Algoritmos , Bases de Dados como Assunto , Documentação , Humanos , Internet , Interface Usuário-Computador
3.
BMC Med Inform Decis Mak ; 18(1): 107, 2018 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-30463544

RESUMO

BACKGROUND: The decreasing cost of obtaining high-quality calls of genomic variants and the increasing availability of clinically relevant data on such variants are important drivers for personalized oncology. To allow rational genome-based decisions in diagnosis and treatment, clinicians need intuitive access to up-to-date and comprehensive variant information, encompassing, for instance, prevalence in populations and diseases, functional impact at the molecular level, associations to druggable targets, or results from clinical trials. In practice, collecting such comprehensive information on genomic variants is difficult since the underlying data is dispersed over a multitude of distributed, heterogeneous, sometimes conflicting, and quickly evolving data sources. To work efficiently, clinicians require powerful Variant Information Systems (VIS) which automatically collect and aggregate available evidences from such data sources without suppressing existing uncertainty. METHODS: We address the most important cornerstones of modeling a VIS: We take from emerging community standards regarding the necessary breadth of variant information and procedures for their clinical assessment, long standing experience in implementing biomedical databases and information systems, our own clinical record of diagnosis and treatment of cancer patients based on molecular profiles, and extensive literature review to derive a set of design principles along which we develop a relational data model for variant level data. In addition, we characterize a number of public variant data sources, and describe a data integration pipeline to integrate their data into a VIS. RESULTS: We provide a number of contributions that are fundamental to the design and implementation of a comprehensive, operational VIS. In particular, we (a) present a relational data model to accurately reflect data extracted from public databases relevant for clinical variant interpretation, (b) introduce a fault tolerant and performant integration pipeline for public variant data sources, and (c) offer recommendations regarding a number of intricate challenges encountered when integrating variant data for clincal interpretation. CONCLUSION: The analysis of requirements for representation of variant level data in an operational data model, together with the implementation-ready relational data model presented here, and the instructional description of methods to acquire comprehensive information to fill it, are an important step towards variant information systems for genomic medicine.


Assuntos
Variação Genética , Genômica , Aplicações da Informática Médica , Oncologia , Medicina de Precisão , Genômica/métodos , Humanos , Oncologia/métodos , Medicina de Precisão/métodos
4.
JAMIA Open ; 4(2): ooab025, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33898938

RESUMO

OBJECTIVE: We present the Berlin-Tübingen-Oncology corpus (BRONCO), a large and freely available corpus of shuffled sentences from German oncological discharge summaries annotated with diagnosis, treatments, medications, and further attributes including negation and speculation. The aim of BRONCO is to foster reproducible and openly available research on Information Extraction from German medical texts. MATERIALS AND METHODS: BRONCO consists of 200 manually deidentified discharge summaries of cancer patients. Annotation followed a structured and quality-controlled process involving 2 groups of medical experts to ensure consistency, comprehensiveness, and high quality of annotations. We present results of several state-of-the-art techniques for different IE tasks as baselines for subsequent research. RESULTS: The annotated corpus consists of 11 434 sentences and 89 942 tokens, annotated with 11 124 annotations for medical entities and 3118 annotations of related attributes. We publish 75% of the corpus as a set of shuffled sentences, and keep 25% as held-out data set for unbiased evaluation of future IE tools. On this held-out dataset, our baselines reach depending on the specific entity types F1-scores of 0.72-0.90 for named entity recognition, 0.10-0.68 for entity normalization, 0.55 for negation detection, and 0.33 for speculation detection. DISCUSSION: Medical corpus annotation is a complex and time-consuming task. This makes sharing of such resources even more important. CONCLUSION: To our knowledge, BRONCO is the first sizable and freely available German medical corpus. Our baseline results show that more research efforts are necessary to lift the quality of information extraction in German medical texts to the level already possible for English.

5.
Artigo em Inglês | MEDLINE | ID: mdl-32914021

RESUMO

PURPOSE: Precision oncology depends on the availability of up-to-date, comprehensive, and accurate information about associations between genetic variants and therapeutic options. Recently, a number of knowledge bases (KBs) have been developed that gather such information on the basis of expert curation of the scientific literature. We performed a quantitative and qualitative comparison of Clinical Interpretations of Variants in Cancer, OncoKB, Cancer Gene Census, Database of Curated Mutations, CGI Biomarkers (the cancer genome interpreter biomarker database), Tumor Alterations Relevant for Genomics-Driven Therapy, and the Precision Medicine Knowledge Base. METHODS: We downloaded each KB and restructured their content to describe variants, genes, drugs, and gene-drug associations in a common format. We normalized gene names to Entrez Gene IDs and drug names to ChEMBL and DrugBank IDs. For the analysis of clinically relevant gene-drug associations, we obtained lists of genes affected by genetic alterations and putative drug therapies for 113 patients with cancer whose cases were presented at the Molecular Tumor Board (MTB) of the Charité Comprehensive Cancer Center. RESULTS: Our analysis revealed that the KBs are largely overlapping but also that each source harbors a notable amount of unique information. Although some KBs cover more genes, others contain more data about gene-drug associations. Retrospective comparisons with findings of the Charitè MTB at the gene level showed that use of multiple KBs may considerably improve retrieval results. The relative importance of a KB in terms of cancer genes was assessed in more detail by logistic regression, which revealed that all but one source had a notable impact on result quality. We confirmed these findings using a second data set obtained from an independent MTB. CONCLUSION: To date, none of the existing publicly available KBs on gene-drug associations in precision oncology fully subsumes the others, but all of them exhibit specific strengths and weaknesses. Consideration of multiple KBs, therefore, is essential to obtain comprehensive results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA