Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur Phys J A Hadron Nucl ; 59(2): 15, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36751673

RESUMO

Muonic atom spectroscopy-the measurement of the x rays emitted during the formation process of a muonic atom-has a long standing history in probing the shape and size of nuclei. In fact, almost all stable elements have been subject to muonic atom spectroscopy measurements and the absolute charge radii extracted from these measurements typically offer the highest accuracy available. However, so far only targets of at least a few hundred milligram could be used as it required to stop a muon beam directly in the target to form the muonic atom. We have developed a new method relying on repeated transfer reactions taking place inside a 100 bar hydrogen gas cell with an admixture of 0.25% deuterium that allows us to drastically reduce the amount of target material needed while still offering an adequate efficiency. Detailed simulations of the transfer reactions match the measured data, suggesting good understanding of the processes taking place inside the gas mixture. As a proof of principle we demonstrate the method with a measurement of the 2p-1s muonic x rays from a 5  µ g gold target.

2.
Phys Rev Lett ; 115(16): 162502, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26550870

RESUMO

We describe a spin-echo method for ultracold neutrons (UCNs) confined in a precession chamber and exposed to a |B0|=1 µT magnetic field. We have demonstrated that the analysis of UCN spin-echo resonance signals in combination with knowledge of the ambient magnetic field provides an excellent method by which to reconstruct the energy spectrum of a confined ensemble of neutrons. The method takes advantage of the relative dephasing of spins arising from a gravitationally induced striation of stored UCNs of different energies, and also permits an improved determination of the vertical magnetic-field gradient with an exceptional accuracy of 1.1 pT/cm. This novel combination of a well-known nuclear resonance method and gravitationally induced vertical striation is unique in the realm of nuclear and particle physics and should prove to be invaluable for the assessment of systematic effects in precision experiments such as searches for an electric dipole moment of the neutron or the measurement of the neutron lifetime.


Assuntos
Gravitação , Modelos Teóricos , Nêutrons , Temperatura Baixa , Cinética
3.
Eur Phys J C Part Fields ; 84(1): 18, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38205101

RESUMO

High-precision searches for an electric dipole moment of the neutron (nEDM) require stable and uniform magnetic field environments. We present the recent achievements of degaussing and equilibrating the magnetically shielded room (MSR) for the n2EDM experiment at the Paul Scherrer Institute. We present the final degaussing configuration that will be used for n2EDM after numerous studies. The optimized procedure results in a residual magnetic field that has been reduced by a factor of two. The ultra-low field is achieved with the full magnetic-field-coil system, and a large vacuum vessel installed, both in the MSR. In the inner volume of ∼1.4m3, the field is now more uniform and below 300 pT. In addition, the procedure is faster and dissipates less heat into the magnetic environment, which in turn, reduces its thermal relaxation time from 12h down to 1.5h.

4.
Eur Phys J C Part Fields ; 83(11): 1061, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38021215

RESUMO

We present a novel Active Magnetic Shield (AMS), designed and implemented for the n2EDM experiment at the Paul Scherrer Institute. The experiment will perform a high-sensitivity search for the electric dipole moment of the neutron. Magnetic-field stability and control is of key importance for n2EDM. A large, cubic, 5 m side length, magnetically shielded room (MSR) provides a passive, quasi-static shielding-factor of about 105 for its inner sensitive volume. The AMS consists of a system of eight complex, feedback-controlled compensation coils constructed on an irregular grid spanned on a volume of less than 1000 m3 around the MSR. The AMS is designed to provide a stable and uniform magnetic-field environment around the MSR, while being reasonably compact. The system can compensate static and variable magnetic fields up to ±50µT (homogeneous components) and ±5µT/m (first-order gradients), suppressing them to a few µT in the sub-Hertz frequency range. The presented design concept and implementation of the AMS fulfills the requirements of the n2EDM experiment and can be useful for other applications, where magnetically silent environments are important and spatial constraints inhibit simpler geometrical solutions.

5.
Rev Sci Instrum ; 93(9): 095105, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36182526

RESUMO

We present the magnetically shielded room (MSR) for the n2EDM experiment at the Paul Scherrer Institute, which features an interior cubic volume with each side of length 2.92 m, thus providing an accessible space of 25 m3. The MSR has 87 openings of diameter up to 220 mm for operating the experimental apparatus inside and an intermediate space between the layers for housing sensitive signal processing electronics. The characterization measurements show a remanent magnetic field in the central 1 m3 below 100 pT and a field below 600 pT in the entire inner volume, up to 4 cm to the walls. The quasi-static shielding factor at 0.01 Hz measured with a sinusoidal 2 µT peak-to-peak signal is about 100 000 in all three spatial directions and increases rapidly with frequency to reach 108 above 1 Hz.

6.
Eur Phys J C Part Fields ; 81(6): 512, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720721

RESUMO

We present the design of a next-generation experiment, n2EDM, currently under construction at the ultracold neutron source at the Paul Scherrer Institute (PSI) with the aim of carrying out a high-precision search for an electric dipole moment of the neutron. The project builds on experience gained with the previous apparatus operated at PSI until 2017, and is expected to deliver an order of magnitude better sensitivity with provision for further substantial improvements. An overview is of the experimental method and setup is given, the sensitivity requirements for the apparatus are derived, and its technical design is described.

8.
J Res Natl Inst Stand Technol ; 110(4): 415-20, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-27308160

RESUMO

Results of the first experiment to search for the radiative decay mode of the free neutron are reported. The γ-spectrum was studied in the energy region from 35 keV to 100 keV in six Cs(Tl) scintillators, each set at an angle of 35° to, and shielded from, a central plastic scintillator electron detector. Triple coincidences were recorded with recoil protons detected in a micro-channel plate. A limit for the branching ratio BR < 6.9 × 10(-3) (90 % confidence level) was obtained, which is greater that the theoretical prediction by not more than a few tenths of a percent.

9.
J Res Natl Inst Stand Technol ; 110(4): 461-4, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-27308168

RESUMO

An experiment aiming at the simultaneous determination of both transversal polarization components of electrons emitted in the decay of free neutrons begins data taking using the polarized cold neutron beam (FUNSPIN) from the Swiss Neutron Spallation Source (SINQ) at the Paul-Scherrer Institute, Villigen. A non-zero value of R due to the e(-) polarization component, which is perpendicular to the plane spanned by the spin of the decaying neutron and the electron momentum, would signal a violation of time reversal symmetry and thus physics beyond the Standard Model. Present status of the project and the results from analysis of the first data sample will be discussed.

10.
Phys Rev Lett ; 63(10): 1050-1053, 1989 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-10040452
11.
Phys Rev Lett ; 56(18): 1901-1904, 1986 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-10032806
17.
Phys Rev Lett ; 102(14): 142302, 2009 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-19392429

RESUMO

The V{ud} element of the Cabibbo-Kobayashi-Maskawa quark mixing matrix has traditionally been determined from the analysis of data in nuclear superallowed 0;{+}-->0;{+} transitions, neutron decay, and pion beta decay. After providing a new test of the conserved vector current hypothesis, we present here a new independent determination of |V{ud}| from a set of five T=1/2 nuclear mirror transitions. The extracted value, |V{ud}|=0.9719+/-0.0017, is at 1.2 combined standard deviations from the value obtained from superallowed 0;{+}-->0;{+} transitions and has a precision comparable to the value obtained from neutron decay experiments.

18.
Phys Rev Lett ; 102(17): 172301, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19518775

RESUMO

Both components of the transverse polarization of electrons (sigmaT1, sigmaT2) emitted in the beta-decay of polarized, free neutrons have been measured. The T-odd, P-odd correlation coefficient quantifying sigmaT2, perpendicular to the neutron polarization and electron momentum, was found to be R=0.008+/-0.015+/-0.005. This value is consistent with time reversal invariance and significantly improves limits on the relative strength of imaginary scalar couplings in the weak interaction. The value obtained for the correlation coefficient associated with sigmaT1, N=0.056+/-0.011+/-0.005, agrees with the Standard Model expectation, providing an important sensitivity test of the experimental setup.

19.
Phys Rev Lett ; 103(8): 081602, 2009 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-19792714

RESUMO

A clock comparison experiment, analyzing the ratio of spin precession frequencies of stored ultracold neutrons and 199Hg atoms, is reported. No daily variation of this ratio could be found, from which is set an upper limit on the Lorentz invariance violating cosmic anisotropy field b perpendicular < 2 x 10(-20) eV (95% C.L.). This is the first limit for the free neutron. This result is also interpreted as a direct limit on the gravitational dipole moment of the neutron |gn| < 0.3 eV/c2 m from a spin-dependent interaction with the Sun. Analyzing the gravitational interaction with the Earth, based on previous data, yields a more stringent limit |gn| < 3 x 10(-4) eV/c2 m.

20.
Phys Rev Lett ; 86(5): 902-5, 2001 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-11177969

RESUMO

Nearly perpendicular magnetic hyperfine fields have been observed for the first time in the Ag "spacers" of Fe/Ag multilayers using low temperature nuclear orientation of (110)Ag(m) at 6 mK. At the same time, vibrating sample magnetometry measurements at temperatures down to 4 K have shown the magnetic anisotropy of the Fe to be in plane. The direction of the Ag hyperfine field is thus noncollinear (nearly orthogonal) to the Fe anisotropy. These results are compared with full potential linearized augmented plane wave calculations using the wien97 code.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA