Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuropharmacology ; 262: 110174, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39369848

RESUMO

Alcohol use disorder (AUD) has a complicated pathophysiology. Binge ethanol intoxication may produce long-lasting changes throughout extended amygdala neurocircuitry including neuroinflammation, often leading to relapse. Therefore, understanding the role of binge drinking induced neuroinflammation on extended amygdala neurocircuitry is critically important for treatment. We sought to understand the role of neuroinflammation in a naturalized form of rodent binge ethanol drinking (Drinking in the Dark (DID)). In a 5-week DID paradigm, we demonstrate that acute intraperitoneal (IP) injection of the anti-inflammatory drug minocycline significantly reduced binge drinking repeatedly in male and female Cx3CR1-GFP and C57BL/6J mice. Importantly, IP administration transiently decreased intermittent access sucrose consumption, was not observed on the second IP injection, but did not significantly alter food or water consumption, suggesting that minocycline may produce initial acute aversive effects and may not alter long-term consumption of natural rewards. Examination of rodent behaviors post ethanol binge drinking reveals no lasting effects of minocycline treatment on locomotion or anxiety-like behavior. To assess neuroinflammation, we developed a novel analysis method using a Matlab image analysis script, which allows for non-biased skeletonization and evaluation of microglia morphology to determine a possible activation state in Cx3CR1-GFP knock-in mice after repeated DID. We observed significant morphological changes of microglia within the CeA, but no differences in the BLA. Taken together, this study demonstrates repeated binge ethanol consumption can produce significant levels of microglia morphology changes within the CeA, and that immunomodulatory therapies may be an intriguing pharmacological candidate for the treatment of AUD.

2.
bioRxiv ; 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37333203

RESUMO

The classic view that neural populations in sensory cortices preferentially encode responses to incoming stimuli has been strongly challenged by recent experimental studies. Despite the fact that a large fraction of variance of visual responses in rodents can be attributed to behavioral state and movements, trial-history, and salience, the effects of contextual modulations and expectations on sensory-evoked responses in visual and association areas remain elusive. Here, we present a comprehensive experimental and theoretical study showing that hierarchically connected visual and association areas differentially encode the temporal context and expectation of naturalistic visual stimuli, consistent with the theory of hierarchical predictive coding. We measured neural responses to expected and unexpected sequences of natural scenes in the primary visual cortex (V1), the posterior medial higher order visual area (PM), and retrosplenial cortex (RSP) using 2-photon imaging in behaving mice collected through the Allen Institute Mindscope's OpenScope program. We found that information about image identity in neural population activity depended on the temporal context of transitions preceding each scene, and decreased along the hierarchy. Furthermore, our analyses revealed that the conjunctive encoding of temporal context and image identity was modulated by expectations of sequential events. In V1 and PM, we found enhanced and specific responses to unexpected oddball images, signaling stimulus-specific expectation violation. In contrast, in RSP the population response to oddball presentation recapitulated the missing expected image rather than the oddball image. These differential responses along the hierarchy are consistent with classic theories of hierarchical predictive coding whereby higher areas encode predictions and lower areas encode deviations from expectation. We further found evidence for drift in visual responses on the timescale of minutes. Although activity drift was present in all areas, population responses in V1 and PM, but not in RSP, maintained stable encoding of visual information and representational geometry. Instead we found that RSP drift was independent of stimulus information, suggesting a role in generating an internal model of the environment in the temporal domain. Overall, our results establish temporal context and expectation as substantial encoding dimensions in the visual cortex subject to fast representational drift and suggest that hierarchically connected areas instantiate a predictive coding mechanism.

3.
Front Behav Neurosci ; 15: 652793, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34447300

RESUMO

An impairment in willingness to exert physical effort in daily activities is a noted aspect of several psychiatric conditions. Previous studies have supported an important role for the lateral habenula (LHb) in dynamic decision-making, including decisions associated with discounting costly high value rewards. It is unknown whether a willingness to exert physical effort to obtain higher rewards is also mediated by the LHb. It also remains unclear whether the LHb is critical to monitoring the task contingencies generally as they change, or whether it also mediates choices in otherwise static reward environments. The present study indicates that the LHb might have an integrative role in effort-based decision-making even when no alterations in choice contingencies occur. Specifically, pharmacological inactivation of the LHb showed differences in motivational behavior by reducing choices for the high effort (30cm barrier) high reward (2 pellets) choice versus the low effort (0 cm) low reward (1 pellet) choice. In sessions where the barrier was removed, rats demonstrated a similar preference for the high reward arm under both control and LHb inactivation. Further, no differences were observed when accounting for sex as a biological variable. These results support that effort to receive a high-value reward is considered on a trial-by-trial basis and the LHb is part of the circuit responsible for integrating this information during decision-making. Therefore, it is likely that previously observed changes in the LHb may be a key contributor to changes in a willingness to exert effort in psychiatric conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA