Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 770, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35140212

RESUMO

Evidence suggests that caffeine (CF) reduces cardiovascular disease (CVD) risk. However, the mechanism by which this occurs has not yet been uncovered. Here, we investigated the effect of CF on the expression of two bona fide regulators of circulating low-density lipoprotein cholesterol (LDLc) levels; the proprotein convertase subtilisin/kexin type 9 (PCSK9) and the low-density lipoprotein receptor (LDLR). Following the observation that CF reduced circulating PCSK9 levels and increased hepatic LDLR expression, additional CF-derived analogs with increased potency for PCSK9 inhibition compared to CF itself were developed. The PCSK9-lowering effect of CF was subsequently confirmed in a cohort of healthy volunteers. Mechanistically, we demonstrate that CF increases hepatic endoplasmic reticulum (ER) Ca2+ levels to block transcriptional activation of the sterol regulatory element-binding protein 2 (SREBP2) responsible for the regulation of PCSK9, thereby increasing the expression of the LDLR and clearance of LDLc. Our findings highlight ER Ca2+ as a master regulator of cholesterol metabolism and identify a mechanism by which CF may protect against CVD.


Assuntos
Cafeína/farmacologia , Colesterol/metabolismo , Fígado/metabolismo , Pró-Proteína Convertase 9/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/farmacologia , Animais , LDL-Colesterol/metabolismo , Células Hep G2 , Hepatócitos , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pró-Proteína Convertase 9/genética , Receptores de LDL/genética , Receptores de LDL/metabolismo
2.
Org Lett ; 23(9): 3373-3378, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33861615

RESUMO

Sulfamates and sulfamides are most often synthesized from alcohols and amines with sulfamoyl chloride, which is an unstable reagent. We have identified hexafluoroisopropyl sulfamate (HFIPS) as a bench-stable solid that reacts readily with a wide variety of alcohols, amines, phenols, and anilines under mild reaction conditions. The sole byproduct of the reaction is hexafluoroisopropanol (HFIP) and reaction products can often be isolated in high purity after an aqueous workup (optional) and removal of solvents by evaporation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA