Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Lupus ; 32(4): 500-507, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36748829

RESUMO

OBJECTIVE: To accelerate the onset of systemic lupus erythematosus in C57BL/6 mice by injecting cadmium chloride nanoemulsion and shorten the traditional modeling time. METHODS: Pristane cadmium chloride nanoemulsion was prepared, and 66 C57BL/6 mice were randomly divided into four groups. The pristane group was intraperitoneally injected with 0.6 mL of pristane blank nanoemulsion, the model group was injected with 0.6 mL of pristane cadmium chloride nanoemulsion, the Cadmium chloride control group was injected with 0.6 mL of cadmium chloride nanoemulsion, and the control group was injected with the same amount of 0.9% sodium chloride solution. Urine protein content, anti-dsDNA antibody content, Th1 cell/Th2 cell ratio, and kidney staining were detected in each group. RESULTS: The model group began to develop disease in the 4th week, the anti-dsDNA antibody level reached 566.71 ± 1.44 ng/L, and the proteinuria reached 245.38 ± 30.54 ng/mL. The model group showed an onset at least 5 weeks earlier than that in the pristane group. There was no significant difference in anti-dsDNA antibody content between Cadmium chloride control group and blank group. At the 12th week, the Th1/Th2 cell ratio in the model group significantly decreased, and the pathological changes in the kidneys were consistent with the typical manifestations of lupus in mouse models. CONCLUSION: These results suggest that cadmium chloride promotes earlier onset of pristane-induced systemic lupus erythematosus in a C57BL/6 mouse model.


Assuntos
Lúpus Eritematoso Sistêmico , Camundongos , Animais , Cloreto de Cádmio/toxicidade , Camundongos Endogâmicos C57BL , Terpenos/efeitos adversos , Modelos Animais de Doenças , Camundongos Endogâmicos BALB C
2.
Psychol Sci ; 33(7): 1097-1111, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35776087

RESUMO

Numerous studies have revealed that an enriched environment can enhance the survival-related behaviors and brain functions of animals. However, the effects and specific roles of the enrichment characteristics on animals' innovative capability, a cognitive ability crucial for survival in nature, are still not well known. In this study, we assigned mice to environment-manipulation groups (n = 15 each) to investigate the specific effects of environmental novelty (novel vs. familiar) and environmental complexity (complex vs. normal) on innovative problem solving and its possible neural mechanisms. Results showed that mice in only the novel-environment group performed better at innovative-problem-solving tasks and showed greater numbers of novel explorations and dopaminergic projections from the ventral tegmental area to the nucleus accumbens in the brain. These findings indicate that an enriched environment has the potential to promote the innovative capability of mice by enhancing their novel exploratory motivation, which depends on the novelty of the environment but not its complexity.


Assuntos
Núcleo Accumbens , Área Tegmentar Ventral , Animais , Dopamina , Camundongos , Motivação , Resolução de Problemas
3.
Appl Environ Microbiol ; 84(14)2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29752271

RESUMO

Microbial mineralization (corrosion, decomposition, and weathering) has been investigated for its role in the extraction and recovery of metals from ores. Here we report our application of biomineralization for the microbial enhanced oil recovery in low-permeability oil reservoirs. It aimed to reveal the etching mechanism of the four Fe(III)-reducing microbial strains under anaerobic growth conditions on Ca-montmorillonite. The mineralogical characterization of Ca-montmorillonite was performed by Fourier transform infrared spectroscopy, X-ray powder diffraction, scanning electron microscopy, and energy-dispersive spectrometry. Results showed that the microbial strains could efficiently reduce Fe(III) at an optimal rate of 71%, alter the crystal lattice structure of the lamella to promote interlayer cation exchange, and efficiently inhibit Ca-montmorillonite swelling at a rate of 48.9%.IMPORTANCE Microbial mineralization is ubiquitous in the natural environment. Microbes in low-permeability reservoirs are able to facilitate alteration of the structure and phase of the Fe-poor minerals by reducing Fe(III) and inhibiting clay swelling, which is still poorly studied. This study aimed to reveal the interaction mechanism between Fe(III)-reducing bacterial strains and Ca-montmorillonite under anaerobic conditions and to investigate the extent and rates of Fe(III) reduction and phase changes with their activities. Application of Fe(III)-reducing bacteria will provide a new way to inhibit clay swelling, to elevate reservoir permeability, and to reduce pore throat resistance after water flooding for enhanced oil recovery in low-permeability reservoirs.


Assuntos
Bactérias/metabolismo , Bentonita/metabolismo , Biomineralização , Campos de Petróleo e Gás/microbiologia , Cátions/metabolismo , Argila/microbiologia , Compostos Férricos/metabolismo , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Permeabilidade , Difração de Raios X
4.
Dev Cogn Neurosci ; 56: 101126, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35751993

RESUMO

Adverse early life experiences, such as maternal separation, are associated with an increased risk for several mental health problems. Symptoms induced by maternal separation that mirror clinically relevant aspects of mental problems, such as cognitive inflexibility, open the possibility of testing putative therapeutics prior to clinical development. Although several animal (e.g., rodent) studies have evaluated the effects of early maternal separation on cognitive flexibility, no consistent conclusions have been drawn. To clarify this issue, in this study, a meta-analysis method was used to systematically explore the relationship between early maternal separation and cognitive flexibility in rodent offspring. Results indicate that early maternal separation could significantly impair cognitive flexibility in rodent offspring. Moderator analyses further showed that the relationship between early maternal separation and cognitive flexibility was not consistent in any case, but was moderated by variations in the experimental procedures, such as the deprivation levels, task characteristics, and rodent strains. These clarify the inconsistent effects of maternal separation on cognitive flexibility in rodents and help us better understand the association between early life adversity and cognitive development.


Assuntos
Privação Materna , Roedores , Animais , Cognição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA