Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Nat Immunol ; 21(4): 442-454, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32152508

RESUMO

Programmed cell death protein 1 (PD-1) ligation delimits immunogenic responses in T cells. However, the consequences of programmed cell death 1 ligand 1 (PD-L1) ligation in T cells are uncertain. We found that T cell expression of PD-L1 in cancer was regulated by tumor antigen and sterile inflammatory cues. PD-L1+ T cells exerted tumor-promoting tolerance via three distinct mechanisms: (1) binding of PD-L1 induced STAT3-dependent 'back-signaling' in CD4+ T cells, which prevented activation, reduced TH1-polarization and directed TH17-differentiation. PD-L1 signaling also induced an anergic T-bet-IFN-γ- phenotype in CD8+ T cells and was equally suppressive compared to PD-1 signaling; (2) PD-L1+ T cells restrained effector T cells via the canonical PD-L1-PD-1 axis and were sufficient to accelerate tumorigenesis, even in the absence of endogenous PD-L1; (3) PD-L1+ T cells engaged PD-1+ macrophages, inducing an alternative M2-like program, which had crippling effects on adaptive antitumor immunity. Collectively, we demonstrate that PD-L1+ T cells have diverse tolerogenic effects on tumor immunity.


Assuntos
Antígeno B7-H1/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Tolerância Imunológica/imunologia , Macrófagos/imunologia , Tolerância a Antígenos Próprios/imunologia , Animais , Diferenciação Celular/imunologia , Linhagem Celular Tumoral , Feminino , Humanos , Interferon gama/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1/imunologia , Transdução de Sinais/imunologia , Microambiente Tumoral/imunologia
2.
Sci Adv ; 8(7): eabi7127, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35179962

RESUMO

The contribution of epigenetic dysregulation to metastasis remains understudied. Through a meta-analysis of gene expression datasets followed by a mini-screen, we identified Plant Homeodomain Finger protein 8 (PHF8), a histone demethylase of the Jumonji C protein family, as a previously unidentified prometastatic gene in melanoma. Loss- and gain-of-function approaches demonstrate that PHF8 promotes cell invasion without affecting proliferation in vitro and increases dissemination but not subcutaneous tumor growth in vivo, thus supporting its specific contribution to the acquisition of metastatic potential. PHF8 requires its histone demethylase activity to enhance melanoma cell invasion. Transcriptomic and epigenomic analyses revealed that PHF8 orchestrates a molecular program that directly controls the TGFß signaling pathway and, as a consequence, melanoma invasion and metastasis. Our findings bring a mechanistic understanding of epigenetic regulation of metastatic fitness in cancer, which may pave the way for improved therapeutic interventions.


Assuntos
Histona Desmetilases , Melanoma , Proliferação de Células , Epigênese Genética , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Melanoma/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator de Crescimento Transformador beta/metabolismo
3.
Oncogene ; 41(38): 4349-4360, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35948648

RESUMO

Response to cancer immunotherapy in primary versus metastatic disease has not been well-studied. We found primary pancreatic ductal adenocarcinoma (PDA) is responsive to diverse immunotherapies whereas liver metastases are resistant. We discovered divergent immune landscapes in each compartment. Compared to primary tumor, liver metastases in both mice and humans are infiltrated by highly anergic T cells and MHCIIloIL10+ macrophages that are unable to present tumor-antigen. Moreover, a distinctive population of CD24+CD44-CD40- B cells dominate liver metastases. These B cells are recruited to the metastatic milieu by Muc1hiIL18hi tumor cells, which are enriched >10-fold in liver metastases. Recruited B cells drive macrophage-mediated adaptive immune-tolerance via CD200 and BTLA. Depleting B cells or targeting CD200/BTLA enhanced macrophage and T-cell immunogenicity and enabled immunotherapeutic efficacy of liver metastases. Our data detail the mechanistic underpinnings for compartment-specific immunotherapy-responsiveness and suggest that primary PDA models are poor surrogates for evaluating immunity in advanced disease.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Hepáticas , Neoplasias Pancreáticas , Animais , Carcinoma Ductal Pancreático/tratamento farmacológico , Humanos , Imunoterapia , Interleucina-10 , Interleucina-18/uso terapêutico , Neoplasias Hepáticas/terapia , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Receptores Imunológicos , Neoplasias Pancreáticas
4.
Cancer Discov ; 12(5): 1314-1335, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35262173

RESUMO

Brain metastasis is a significant cause of morbidity and mortality in multiple cancer types and represents an unmet clinical need. The mechanisms that mediate metastatic cancer growth in the brain parenchyma are largely unknown. Melanoma, which has the highest rate of brain metastasis among common cancer types, is an ideal model to study how cancer cells adapt to the brain parenchyma. Our unbiased proteomics analysis of melanoma short-term cultures revealed that proteins implicated in neurodegenerative pathologies are differentially expressed in melanoma cells explanted from brain metastases compared with those derived from extracranial metastases. We showed that melanoma cells require amyloid beta (Aß) for growth and survival in the brain parenchyma. Melanoma-secreted Aß activates surrounding astrocytes to a prometastatic, anti-inflammatory phenotype and prevents phagocytosis of melanoma by microglia. Finally, we demonstrate that pharmacologic inhibition of Aß decreases brain metastatic burden. SIGNIFICANCE: Our results reveal a novel mechanistic connection between brain metastasis and Alzheimer's disease, two previously unrelated pathologies; establish Aß as a promising therapeutic target for brain metastasis; and demonstrate suppression of neuroinflammation as a critical feature of metastatic adaptation to the brain parenchyma. This article is highlighted in the In This Issue feature, p. 1171.


Assuntos
Neoplasias Encefálicas , Melanoma , Peptídeos beta-Amiloides/uso terapêutico , Astrócitos/metabolismo , Neoplasias Encefálicas/genética , Humanos , Melanoma/tratamento farmacológico , Metástase Neoplásica , Doenças Neuroinflamatórias
5.
Sci Immunol ; 5(50)2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32826342

RESUMO

Piezo1 is a mechanosensitive ion channel that has gained recognition for its role in regulating diverse physiological processes. However, the influence of Piezo1 in inflammatory disease, including infection and tumor immunity, is not well studied. We postulated that Piezo1 links physical forces to immune regulation in myeloid cells. We found signal transduction via Piezo1 in myeloid cells and established this channel as the primary sensor of mechanical stress in these cells. Global inhibition of Piezo1 with a peptide inhibitor was protective against both cancer and septic shock and resulted in a diminution in suppressive myeloid cells. Moreover, deletion of Piezo1 in myeloid cells protected against cancer and increased survival in polymicrobial sepsis. Mechanistically, we show that mechanical stimulation promotes Piezo1-dependent myeloid cell expansion by suppressing the retinoblastoma gene Rb1 We further show that Piezo1-mediated silencing of Rb1 is regulated via up-regulation of histone deacetylase 2. Collectively, our work uncovers Piezo1 as a targetable immune checkpoint that drives immunosuppressive myelopoiesis in cancer and infectious disease.


Assuntos
Carcinoma Ductal Pancreático/imunologia , Doenças Transmissíveis/imunologia , Canais Iônicos/imunologia , Neoplasias Pancreáticas/imunologia , Sepse/imunologia , Animais , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Humanos , Imunidade Inata , Canais Iônicos/genética , Estimativa de Kaplan-Meier , Masculino , Camundongos Transgênicos , Células Mieloides/imunologia , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Transdução de Sinais
6.
Oncogene ; 38(23): 4512-4526, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30742098

RESUMO

Liver fibrosis and fibrosis-associated hepatocarcinogenesis are driven by chronic inflammation and are leading causes of morbidity and death worldwide. SYK signaling regulates critical processes in innate and adaptive immunity, as well as parenchymal cells. We discovered high SYK expression in the parenchymal hepatocyte, hepatic stellate cell (HSC), and the inflammatory compartments in the fibrotic liver. We postulated that targeting SYK would mitigate hepatic fibrosis and oncogenic progression. We found that inhibition of SYK with the selective small molecule inhibitors Piceatannol and PRT062607 markedly protected against toxin-induced hepatic fibrosis, associated hepatocellular injury and intra-hepatic inflammation, and hepatocarcinogenesis. SYK inhibition resulted in increased intra-tumoral expression of the p16 and p53 but decreased expression of Bcl-xL and SMAD4. Further, hepatic expression of genes regulating angiogenesis, apoptosis, cell cycle regulation, and cellular senescence were affected by targeting SYK. We found that SYK inhibition mitigated both HSC trans-differentiation and acquisition of an inflammatory phenotype in T cells, B cells, and myeloid cells. However, in vivo experiments employing selective targeted deletion of SYK indicated that only SYK deletion in the myeloid compartment was sufficient to confer protection against fibrogenic progression. Targeting SYK promoted myeloid cell differentiation into hepato-protective TNFαlow CD206hi phenotype downregulating mTOR, IL-8 signaling and oxidative phosphorylation. Collectively, these data suggest that SYK is an attractive target for experimental therapeutics in treating hepatic fibrosis and oncogenesis.


Assuntos
Cirrose Hepática/patologia , Células Mieloides/metabolismo , Transdução de Sinais , Quinase Syk/metabolismo , Animais , Carcinogênese , Carcinoma Hepatocelular/metabolismo , Transdiferenciação Celular , Cicloexilaminas/farmacologia , Feminino , Fibrose , Células Estreladas do Fígado/citologia , Humanos , Interleucina-8/metabolismo , Lectinas Tipo C/metabolismo , Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Masculino , Receptor de Manose , Lectinas de Ligação a Manose/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Experimentais , Fosforilação Oxidativa , Fenótipo , Pirimidinas/farmacologia , Receptores de Superfície Celular/metabolismo , Estilbenos/farmacologia , Quinase Syk/antagonistas & inibidores , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA