Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 262(Pt 2): 119941, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39243845

RESUMO

Technological change has affected human health dating back to at least the Neolithic agricultural revolution. Growing evidence indicates widespread environmental pollution began with metallurgical practices and continues today. Environmental exposures to trace elements released from these practices have the potential to alter human body composition, such as bone mineral chemistry, especially for elements that are not homeostatically regulated. These signals can be used for inferences about human health, particularly when metallotoxins are detected in abundance. Therefore, trace element geochemistry of archaeological bone may provide a means to evaluate human health through time. However, diagenetic factors can hinder attempts to extract this information. Thus, we employed advanced analytical and interpretive methods to carefully distinct groups of European burials over about 1000 years to address questions of potentially toxic trace element exposures. Here, to address our hypothesis that Roman urbanization created one of the earliest urban toxic environment caused by multiple exposures, we present a comprehensive suite of bone trace element compositions of femora from burials spanning three distinct archaeological time periods (Bronze Age, Iron Age, and Roman period). All bone specimens were obtained from the anterior-mid shaft of carefully selected femora and processed using the same analytical techniques designed to mitigate soil contamination. Our data indicate that widespread environmental pollution accelerated in Londinium during the Roman Empire period, leading to conditions where population health would be vulnerable to environmental changes. Specifically, bone lead, silver, vanadium, arsenic, and cadmium concentrations were typically elevated and would likely be associated with multiple toxicities. In addition, bone iron levels were extremely high in some Londinium burials. Our interpretation is that the Romans inhabiting Londinium were not just poisoned by lead exposure as several previous studies show but by several metallotoxins.

2.
MMWR Morb Mortal Wkly Rep ; 72(37): 1005-1009, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37708080

RESUMO

Wastewater surveillance has been used to assist public health authorities in tracking local transmission of SARS-CoV-2. The usefulness of wastewater surveillance to track community spread of other respiratory pathogens, including influenza virus and respiratory syncytial virus (RSV), is less clear. During the 2022-23 respiratory diseases season, concentrations of influenza A virus and RSV in wastewater samples in three major Wisconsin cities were compared with emergency department (ED) visits associated with these pathogens. In all three cities, higher concentrations of influenza A virus and RSV in wastewater were associated with higher numbers of associated ED visits (Kendall's tau range = 0.50-0.63 for influenza-associated illness and 0.30-0.49 for RSV-associated illness). Detections of both influenza A virus and RSV in wastewater often preceded a rise in associated ED visits for each pathogen, and virus material remained detectable in wastewater for up to 3 months after pathogen-specific ED visits declined. These results demonstrate that wastewater surveillance has the potential to complement conventional methods of influenza and RSV surveillance, detecting viral signals earlier and for a longer duration than do clinical data. Continued use of wastewater surveillance as a supplement to established surveillance systems such as ED visits might improve local understanding and response to seasonal respiratory virus outbreaks.


Assuntos
COVID-19 , Vírus da Influenza A , Influenza Humana , Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Humanos , Águas Residuárias , Influenza Humana/epidemiologia , Incidência , Vigilância Epidemiológica Baseada em Águas Residuárias , Wisconsin/epidemiologia , SARS-CoV-2 , Infecções por Vírus Respiratório Sincicial/epidemiologia , Serviço Hospitalar de Emergência
3.
Environ Sci Technol ; 56(24): 17795-17804, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36472388

RESUMO

Oxidative potential (OP) has been proposed as a possible integrated metric for particles smaller than 2.5 µm in diameter (PM2.5) to evaluate adverse health outcomes associated with particulate air pollution exposure. Here, we investigate how OP depends on sources and chemical composition and how OP varies by land use type and neighborhood socioeconomic position in the Los Angeles area. We measured OH formation (OPOH), dithiothreitol loss (OPDTT), black carbon, and 52 metals and elements for 54 total PM2.5 samples collected in September 2019 and February 2020. The Positive Matrix Factorization source apportionment model identified four sources contributing to volume-normalized OPOH: vehicular exhaust, brake and tire wear, soil and road dust, and mixed secondary and marine. Exhaust emissions contributed 42% of OPOH, followed by 21% from brake and tire wear. Similar results were observed for the OPDTT source apportionment. Furthermore, by linking measured PM2.5 and OP with census tract level socioeconomic and health outcome data provided by CalEnviroScreen, we found that the most disadvantaged neighborhoods were exposed to both the most toxic particles and the highest particle concentrations. OPOH exhibited the largest inverse social gradients, followed by OPDTT and PM2.5 mass. Finally, OPOH was the metric most strongly correlated with adverse health outcome indicators.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Material Particulado/análise , Los Angeles , Emissões de Veículos/análise , Poeira/análise , Fatores Socioeconômicos , Estresse Oxidativo , Monitoramento Ambiental/métodos
4.
Environ Res ; 181: 108919, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31753466

RESUMO

The health effects associated with human exposure to airborne fine particulate matter (PM2.5) have been linked to the ability of PM2.5 to facilitate the production of excess cellular reactive oxygen species (oxidative potential). Concern about the adverse human health impacts of PM2.5 has led to the increased use of indoor air cleaners to improve indoor air quality, which can be an important environment for PM2.5 exposure. However, the degree to which the oxidative potential of indoor and personal PM2.5 can be influenced by an indoor air cleaner remains unclear. In this study we enrolled 43 children with physician diagnosed asthma in suburban Shanghai, China and collected two paired-sets of 48-h indoor, outdoor, and personal PM2.5 exposure samples. One set of samples was collected under "real filtration" during which a functioning air cleaner was installed in the child's bedroom, and the other ("false filtration") with an air cleaner without internal filters. The PM2.5 samples were characterized by inductively coupled plasma mass spectroscopy for elements, and by an alveolar macrophage assay for oxidative potential. The sources of metals contributing to our samples were determined by the EPA Positive Matrix Factorization model. The oxidative potential was lower under real filtration compared to sham for indoor (median real/sham ratio: 0.260) and personal exposure (0.813) samples. Additionally, the sources of elements in PM2.5 that were reduced indoors and personal exposure samples by the air cleaner (e.g. regional aerosol and roadway emissions) were found by univariate multiple regression models to be among those contributing to the oxidative potential of the samples. An IQR increase in the regional aerosol and roadway emissions sources was associated with a 107% (95% CI: 80.1-138%) and 38.1% (17.6-62.1%) increase in measured oxidative potential respectively. Our results indicate that indoor air cleaners can reduce the oxidative potential of indoor and personal exposure to PM2.5, which may lead to improved human health.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Produtos Domésticos , Metais , Material Particulado , Criança , China , Monitoramento Ambiental , Humanos , Estresse Oxidativo , Tamanho da Partícula
5.
Atmos Environ (1994) ; 2232020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-32577088

RESUMO

The volatility profiles of PM2.5 semi-volatile compounds and relationships to the oxidative potential of urban airborne particles were investigated in central Los Angeles, CA. Ambient and thermodenuded fine (PM2.5) particles were collected during both warm and cold seasons by employing the Versatile Aerosol Concentration Enrichment System (VACES) combined with a thermodenuder. When operated at 50 °C and 100 °C, the VACES/thermodenuder system removed about 50% and 75% of the PM2.5 volume concentration, respectively. Most of the quantified PM2.5 semi-volatile species including organic carbon (OC), water soluble organic carbon (WSOC), polycyclic aromatic hydrocarbons (PAHs), organic acids, n-alkanes, and levoglucosan, as well as inorganic ions (i.e., nitrate, sulfate, and ammonium) exhibited concentration losses in the ranges of 40-66% and 67-92%, respectively, as the thermodenuder temperature increased to 50 °C and 100 °C. Species in the PM2.5 such as elemental carbon (EC) and inorganic elements (including trace metals) were minimally impacted by the heating process - thus can be considered refractory. On average, nearly half of the PM2.5 oxidative potential (as measured by the dichlorodihydrofluorescein (DCFH) alveolar macrophage in vitro assay) was associated with the semi-volatile species removed by heating the aerosols to only 50 °C, highlighting the importance of this quite volatile compartment to the ambient PM2.5 toxicity. The fraction of PM2.5 oxidative potential lost upon heating the aerosols to 100 °C further increased to around 75-85%. Furthermore, we document statistically significant correlations between the PM2.5 oxidative potential and different semi-volatile organic compounds originating from primary and secondary sources, including OC (Rwarm, and Rcold) (0.86, and 0.74), WSOC (0.60, and 0.98), PAHs (0.88, and 0.76), organic acids (0.76, and 0.88), and n-alkanes (0.67, and 0.83) in warm and cold seasons, respectively, while a strong correlation between oxidative potential and levoglucosan, a tracer of biomass burning, was observed only during the cold season (Rcold=0.81).

6.
Nutr Cancer ; 70(3): 441-446, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29537902

RESUMO

PURPOSE: Heavy metals and other elements may act as breast carcinogens due to estrogenic activity. We investigated associations between urine concentrations of a panel of elements and breast density. METHODS: Mammographic density categories were abstracted from radiology reports of 725 women aged 40-65 yr in the Avon Army of Women. A panel of 27 elements was quantified in urine using high resolution magnetic sector inductively coupled plasma mass spectrometry. We applied LASSO (least absolute shrinkage and selection operator) logistic regression to the 27 elements and calculated odds ratios (OR) and 95% confidence intervals (CI) for dense vs. nondense breasts, adjusting for potential confounders. RESULTS: Of the 27 elements, only magnesium (Mg) was selected into the optimal regression model. The odds ratio for dense breasts associated with doubling the Mg concentration was 1.24 (95% CI 1.03-1.49). Doubling the calcium-to-magnesium ratio was inversely associated with dense breasts (OR 0.83, 95% CI 0.70-0.98). CONCLUSIONS: Our cross-sectional study found that higher levels of urinary magnesium were associated with greater breast density. Prospective studies are needed to confirm whether magnesium as evaluated in urine is prospectively associated with breast density and, more importantly, breast cancer.


Assuntos
Densidade da Mama/fisiologia , Magnésio/urina , Adulto , Idoso , Índice de Massa Corporal , Neoplasias da Mama/etiologia , Cálcio/urina , Estudos Transversais , Feminino , Humanos , Modelos Logísticos , Metais/urina , Pessoa de Meia-Idade , Pós-Menopausa , Fatores de Risco
8.
Am J Epidemiol ; 183(9): 815-23, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27037269

RESUMO

Cadmium is a widespread heavy metal pollutant that may act as an exogenous estrogenic hormone. Environmental cadmium exposure has been associated with risk of breast cancer in retrospective studies. We prospectively assessed the relationship between cadmium exposure, evaluated by creatinine-normalized urinary cadmium concentration, and invasive breast cancer among 12,701 postmenopausal women aged ≥50 years in a Women's Health Initiative study of bone mineral density. After a median of 13.2 years of follow-up (1993-2010), 508 cases of invasive breast cancer and 1,050 comparison women were identified for a case-cohort analysis. Multivariable Cox regression was used to calculate hazard ratios and 95% confidence intervals. Risk of breast cancer was not associated with urinary cadmium parameterized either in quartiles (comparing highest quartile with lowest, hazard ratio = 0.80, 95% confidence interval: 0.56, 1.14; P for trend = 0.20) or as a log-transformed continuous variable (per 2-fold higher urinary cadmium concentration, hazard ratio = 0.94, 95% confidence interval: 0.86, 1.03). We did not observe an association between urinary cadmium and breast cancer risk in any subgroup examined, including never smokers and women with body mass index (weight (kg)/height (m)(2)) less than 25. Results were consistent in both estrogen receptor-positive and estrogen receptor-negative tumors. Our results do not support the hypothesis that environmental cadmium exposure is associated with risk of postmenopausal breast cancer.


Assuntos
Neoplasias da Mama/epidemiologia , Cádmio/urina , Exposição Ambiental/análise , Pós-Menopausa , Fatores Etários , Idoso , Neoplasias da Mama/urina , Poluentes Ambientais/análise , Feminino , Comportamentos Relacionados com a Saúde , Humanos , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Fatores de Risco , Fatores Socioeconômicos , Saúde da Mulher
9.
Faraday Discuss ; 189: 381-405, 2016 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-27116365

RESUMO

In this study we applied several assays, an in vitro rat alveolar macrophage model, a chemical ROS probe (DTT, dithiothreitol), and cytokine induction (TNFα) to examine relationships between PM-induced generation of reactive oxygen species (ROS) and PM composition, using a unique set of size-resolved PM samples obtained from urban and rural environments across Europe. From April-July 2012, we collected PM from roadside canyon, roadside motorway, and background urban sites in each of six European cities and from three rural sites spanning the continent. A Hi-Vol sampler was used to collect PM in three size classes (PM>7, PM7-3, PM3) and PM was characterized for total elements, and oxidative activity quantified in unfiltered and filtered PM extracts. We measured a remarkable uniformity in air concentrations of ROS and especially DTT activity across the continent. Only a 4-fold difference was documented for DTT across the urban sites and a similar variance was documented for ROS, implying that chemical drivers of oxidative activity are relatively similar between sites. The ROS and DTT specific activity was greater at urban background sites (and also rural sites) than at urban canyon locations. PM3 dominated the size distribution of both ROS activity (86% of total) and DTT activity (76% of total), reflecting both the large contribution of PM3 to total PM mass levels and importantly the higher specific oxidative activity of the PM3 in comparison with the larger particles. The soluble fraction of total activity was very high for DTT (94%) as well as for ROS (64%) in the PM3. However in the larger PM size fractions the contributions of the insoluble components became increasingly significant. The dominance of the insoluble PM drivers of activity was particularly evident in the TNFα data, where the insoluble contribution to cytokine production could be 100-fold greater than that from soluble components. ROS and DTT activity were strongly correlated in the PM3 (r = 0.93), however oxidative activity was not correlated with any measured inorganic element in this size cut. In contrast, significant correlations of both ROS and DTT oxidative activity with specific groups of chemical elements were documented in the larger PM size fractions.


Assuntos
Aerossóis/análise , Poluição do Ar/análise , Aerossóis/química , Aerossóis/toxicidade , Animais , Linhagem Celular , Cidades , Macrófagos Alveolares/citologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/metabolismo , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Material Particulado/química , Material Particulado/toxicidade , Ratos , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
10.
Faraday Discuss ; 189: 361-80, 2016 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-27086939

RESUMO

This study examines the associations between the oxidative potential of ambient PM2.5 and PM0.18, measured by means of the dithiothreitol (DTT) assay, and their chemical constituents and modeled sources. Particulate matter (PM) samples were collected from 2012-2013 in Central Los Angeles (LA) and 2013-2014 in Anaheim, California, USA. Detailed chemical analyses of the PM samples, including carbonaceous species, inorganic elements and water-soluble ions, were conducted. Univariate analysis indicated a high correlation (R > 0.60) between the DTT activity and the concentrations of carbonaceous species at both sites. The strongest correlations were observed between DTT and organic tracers of primary vehicle tailpipe emissions including polycyclic aromatic hydrocarbons (PAHs) and hopanes as well as EC, with higher correlations for PM0.18versus PM2.5 components. Moreover, metals and trace elements (e.g., Ba, Cu, Fe, Mn, Pb and Sb) in both size ranges were also associated with DTT activity. Multiple linear regression (MLR) analysis was performed on DTT activity and PM sources identified by a Molecular Marker-Chemical Mass Balance (MM-CMB) model (i.e. major carbonaceous sources: vehicle tailpipe emissions, wood smoke, primary biogenic and secondary organic carbon) together with other typical sources of ambient PM (i.e. crustal material, vehicular abrasion, secondary ions and sea salt). Overall, our findings illustrate the relative importance of different traffic sources on the oxidative potential of ambient PM. Despite major reductions of tailpipe emissions, the lack of similar reductions (and possibly an increase) in non-tailpipe emissions makes them an important source of traffic-related PM in Los Angeles and their increasing role in the overall PM toxicity raises concerns for public health.


Assuntos
Material Particulado/análise , Emissões de Veículos/análise , Modelos Lineares , Los Angeles , Metais/química , Oxirredução , Hidrocarbonetos Policíclicos Aromáticos/química , Espécies Reativas de Oxigênio/metabolismo , Triterpenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA