Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Invest New Drugs ; 30(2): 568-81, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21170760

RESUMO

Virotherapy is an emerging strategy for the treatment of cancer that utilizes both replication-competent and genetically modified viruses to selectively kill tumor cells. We have previously shown that Coxsackievirus A21 (CVA21), a common-cold producing enterovirus, is an effective oncolytic agent against human melanoma, prostate, and breast cancer xenografts in vivo. CVA21 specifically targets and lytically infects susceptible cells expressing the CVA21 cellular receptors, intercellular adhesion molecule-1 (ICAM-1) and decay-accelerating factor (DAF). Herein, the efficacy of CVA21 administered in combination with doxorubicin hydrochloride as a new therapeutic regimen for cancer was investigated. Flow cytometric analysis demonstrated that the human breast, colorectal, and pancreatic cancer cell lines examined expressed moderate levels of surface ICAM-1 and DAF, whilst a normal breast cell line expressed only minimal levels. When CVA21 was combined with doxorubicin hydrochloride, synergistically enhanced cell death was observed when CVA21 was administered both simultaneously or 24 h prior to doxorubicin hydrochloride exposure. Doxorubicin hydrochloride had no effect on CVA21 replication. Through the use of an orthotopic (MDA-MB-231-luc) xenograft SCID mouse model of human breast cancer we showed that a single intravenous injection of CVA21 in combination with an intraperitoneal injection of doxorubicin hydrochloride resulted in significantly greater tumor reduction compared to either agent alone. Overall, these findings highlight the exciting potential of CVA21, administered in combination with doxorubicin hydrochloride, as a new therapeutic regimen for cancer.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Enterovirus/patogenicidade , Neoplasias/terapia , Terapia Viral Oncolítica , Vírus Oncolíticos/patogenicidade , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antígenos CD55/metabolismo , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Quimioterapia Adjuvante , Relação Dose-Resposta a Droga , Doxorrubicina/administração & dosagem , Enterovirus/metabolismo , Feminino , Citometria de Fluxo , Humanos , Injeções Intraperitoneais , Molécula 1 de Adesão Intercelular/metabolismo , Camundongos , Camundongos SCID , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias/virologia , Vírus Oncolíticos/metabolismo , Fatores de Tempo , Carga Tumoral/efeitos dos fármacos , Internalização do Vírus , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Virol J ; 8: 22, 2011 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-21241513

RESUMO

Many RNA viruses are displaying great promise in the field of oncolytic virotherapy. Previously, we reported that the picornavirus Coxsackievirus A21 (CVA21) possessed potent oncolytic activity against cultured malignant melanoma cells and melanoma xenografts in mice. In the present study, we demonstrate that three additional Group A Coxsackieviruses; Coxsackievirus A13 (CVA13), Coxsackievirus A15 (CVA15) and Coxsackievirus A18 (CVA18), also have similar oncolytic activity against malignant melanoma. Each of the viruses grew quickly to high titers in cancer cells expressing ICAM-1 and intratumoral injection of preformed subcutaneous SK-Mel-28 xenografts in mice with CVA13, CVA15 and CVA18 resulted in significant tumor volume reduction.As preexisting immunity could potentially hinder oncolytic virotherapy, sera from stage IV melanoma patients and normal controls were tested for levels of protective antibody against the panel of oncolytic Coxsackieviruses. Serum neutralization assays revealed that 3 of 21 subjects possessed low levels of anti-CVA21 antibodies, while protective antibodies for CVA13, CVA15 and CVA18 were not detected in any sample. Serum from individuals who were seropositive for CVA21 failed to exhibit cross-neutralization of CVA13, CVA15 and CVA18. From these studies it can be concluded that the administration of CVA13, CVA15 or CVA18 could be employed as a potential multivalent oncolytic therapy against malignant melanoma.


Assuntos
Enterovirus Humano A/crescimento & desenvolvimento , Melanoma/terapia , Melanoma/virologia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/crescimento & desenvolvimento , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Melanoma/patologia , Camundongos , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/terapia , Neoplasias Cutâneas/virologia , Transplante Heterólogo/patologia , Resultado do Tratamento , Carga Viral
3.
Respirology ; 16(2): 291-9, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21054674

RESUMO

BACKGROUND AND OBJECTIVE: Viral nucleic acid may be detected for up to 6 months after an acute asthma deterioration, but the pattern and consequences of viral persistence after acute asthma are incompletely understood. This study investigates the frequency of viral persistence after acute asthma, assesses viral infectivity and determines the host inflammatory responses to viral persistence. METHODS: Adults and children presenting to hospital with acute asthma and a confirmed respiratory virus infection were studied acutely and at recovery 4-6 weeks later by clinical evaluation and induced sputum for viral and inflammatory mediator detection. RESULTS: Viral RNA was detected during both acute asthma and recovery visits in 17 subjects (viral persistence), whereas in 22 subjects viral RNA had cleared by recovery (viral clearance). The following viruses were detected at recovery: human rhinovirus: 16; respiratory syncytial virus: 2; influenza: 2. In subjects with viral persistence, eight isolates were different to the virus detected at Visit 1. Forty-four per cent of the human rhinovirus isolates were infective at recovery. Asthma and infection severity were similar in the viral clearance and viral persistence groups. Viral persistence was associated with elevated IL-10 mRNA and inducible protein-10 gene expression. CONCLUSIONS: Respiratory viral detection after acute asthma is common, and most often persistence is with non-infective human rhinovirus. There is a host inflammatory response with an altered cytokine environment, and the viral RNA can be source of persistent infection. These effects may have longer-term consequences in asthma.


Assuntos
Asma/virologia , Quimiocina CXCL10/metabolismo , RNA Viral/isolamento & purificação , Rhinovirus/isolamento & purificação , Doença Aguda , Adolescente , Asma/metabolismo , Criança , Estudos de Coortes , Feminino , Humanos , Interleucina-10/metabolismo , Masculino , Infecções por Vírus de RNA/diagnóstico , RNA Viral/metabolismo , Vírus Sincicial Respiratório Humano/isolamento & purificação , Rhinovirus/metabolismo , Adulto Jovem
4.
Breast Cancer Res Treat ; 113(1): 21-30, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18256929

RESUMO

Breast cancer is the most commonly diagnosed malignancy in women worldwide. Metastatic development is associated with poor prognosis and current therapies provide only limited success. Virotherapy is an emerging strategy for the treatment of cancer that utilizes both replication-competent and genetically modified viruses to selectively kill tumor cells. We have previously shown that Coxsackievirus A21 (CVA21), a wild-type common-cold producing enterovirus, is an effective oncolytic agent against human melanoma xenografts in vivo. CVA21 specifically targets and lytically infects susceptible cells expressing the CVA21 cellular receptors, intercellular adhesion molecule-1 (ICAM-1) and/or decay-accelerating factor (DAF). Herein, the efficacy of CVA21 as a therapeutic agent against human breast cancer was investigated both in vitro and in vivo. Flow cytometric analysis revealed that the human breast cancer cell lines examined expressed significantly elevated levels of surface ICAM-1 and DAF compared to normal breast cell lines, and that all cancerous lines were more susceptible to lytic infection by CVA21 than the normal cells. Through the use of subcutaneous (T47D cells) and orthotopic (MDA-MB-231-luc cells) xenograft SCID mouse models it was demonstrated that a single intravenous injection of CVA21 produced significant regression of pre-established tumors in vivo, as well as targeting and elimination of metastases in the orthotopic model. Taken together, these findings highlight the exciting potential of CVA21 as a therapeutic agent against both primary and metastatic human breast cancer.


Assuntos
Neoplasias da Mama/patologia , Infecções por Coxsackievirus/complicações , Enterovirus/isolamento & purificação , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/virologia , Antígenos CD55/genética , Divisão Celular , Linhagem Celular Tumoral , Enterovirus/crescimento & desenvolvimento , Feminino , Humanos , Molécula 1 de Adesão Intercelular/genética , Camundongos , Camundongos SCID , Metástase Neoplásica , Transplante Heterólogo
5.
Int J Oncol ; 26(6): 1471-6, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15870858

RESUMO

Cultured melanoma cell lines despite exhibiting similar in vitro morphology, display significant phenotypic and growth rate differences when propagated as in vivo xenografts. Previously we have shown that Coxsackievirus A21 (CVA21) lytically infects in vitro cultures of malignant melanoma cells and is efficient at reducing the tumor burden of mice bearing slow-growing SK-Mel-28 melanoma xenografts. The oncolytic activity of CVA21 against in vivo melanoma xenografts, which possess rapid growth rates and more extensive vascular structure than SK-Mel-28 xenografts warrants further investigation. In the present study we evaluated the oncolytic action of CVA21 against rapidly growing melanoma xenografts (ME4405) which exhibit a highly vascular phenotype. Flow cytometric analysis indicated that in vitro cultures of ME4405 cells expressed comparable levels of the CVA21 cellular receptors, ICAM-1 (intercellular adhesion molecules-1) and DAF (decay accelerating factor) to SK-Mel-28 cells. Despite similar levels of CVA21 receptor expression, SK-Mel-28 cells appear to be more susceptible to viral lysis than ME4405 cells, even though the kinetics of virus replication in both lines was comparable. Intratumoral, intraperitoneal or intravenous administration of CVA21 were equally effective in reducing the tumor volume of ME4405 xenografts in immunodeficient mice, and provides further evidence for the use of CVA21 as a novel oncolytic agent against varying phenotypes of malignant melanoma.


Assuntos
Enterovirus/fisiologia , Melanoma/terapia , Animais , Antígenos CD55/análise , Linhagem Celular Tumoral , Humanos , Molécula 1 de Adesão Intercelular/análise , Melanoma/patologia , Camundongos , Transplante de Neoplasias , Transplante Heterólogo , Replicação Viral
6.
Clin Cancer Res ; 10(1 Pt 1): 53-60, 2004 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-14734451

RESUMO

PURPOSE: The incidence of malignant melanoma continues to increase worldwide; however, treatment of metastatic melanoma remains unsatisfactory, and there is an urgent need for development of effective targeted therapeutics. A potential biological target on the surface of malignant melanoma cells is the up-regulated expression of intercellular adhesion molecule (ICAM)-1 and decay-accelerating factor (DAF), relative to surrounding benign tissue. Coxsackievirus A21 (a common cold virus) targets and destroys susceptible cells via specific viral capsid interactions with surface-expressed virus receptors comprising ICAM-1 and DAF. EXPERIMENTAL DESIGN: The oncolytic capacity of a genetically unmodified wild-type common cold-producing human enterovirus (Coxsackievirus A21, CAV21) was assessed against in vitro cultures and in vivo xenografts of malignant human melanoma cells. RESULTS: In vitro studies established that human melanoma cells endogenously express elevated levels of ICAM-1/DAF and were highly susceptible to rapid viral oncolysis by CAV21 infection, whereas ICAM-1/DAF-expressing peripheral blood lymphocytes were refractile to infection. In vivo studies revealed that the tumor burden of nonobese diabetic severe combined immunodeficient mice bearing multiple s.c. melanoma xenografts was rapidly reduced by oncolysis mediated by a single administration of CAV21. The antitumor activity of CAV21 was characterized by highly efficient systemic spread of progeny CAV21, with oncolysis of tumors also occurring at sites distant to the primary site of viral administration. CONCLUSIONS: Overall, the findings presented herein demonstrate an important proof of principle using administration of replication-competent CAV21 as a potential biological oncolytic agent in the control of human metastatic melanoma.


Assuntos
Terapia Biológica , Enterovirus Humano A/fisiologia , Melanoma/terapia , Neoplasias Cutâneas/terapia , Animais , Antígenos CD55/metabolismo , Citometria de Fluxo , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Melanoma/metabolismo , Melanoma/virologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/virologia , Transplante Heterólogo , Células Tumorais Cultivadas/transplante
7.
J Mol Med (Berl) ; 87(4): 385-99, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19139835

RESUMO

The dissemination of malignant gastric cells to the peritoneum occurs frequently, usually as an early event in disease, and results in poor patient prognosis. Surgery and chemotherapy offer limited therapeutic success. The low-pathogenic human enterovirus, Echovirus 1 (EV1), is an oncolytic virus that selectively targets and destroys malignant prostate and ovarian cancer xenografts in vivo. Lytic EV1 infection requires the cell surface expression of alpha(2)beta(1), an integrin involved in the dissemination of gastric cancer cells to the peritoneum. Herein, we evaluated the capacity of EV1 for anti-neoplastic cell action in gastric peritoneal carcinomatosis. Flow cytometric analysis demonstrated that alpha(2)beta(1) was abundantly surface expressed on a panel of gastric cancer cell lines, rendering the majority of lines highly susceptible to in vitro lytic EV1 infection and supportive of efficient viral progeny production. A bioluminescent MKN-45-Luc SCID mouse model of peritoneal dissemination was developed to allow real-time non-invasive monitoring of peritoneal tumor burden. Employing this mouse model, we demonstrated a therapeutic dose-response for escalating oncolytic EV1 doses. Taken together, these results emphasize the exciting potential for EV1 as a single or adjunct therapy for the control of the peritoneal dissemination of gastric cancer.


Assuntos
Enterovirus Humano B/fisiologia , Neoplasias Peritoneais/terapia , Neoplasias Gástricas/terapia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Linhagem Celular Tumoral , Feminino , Citometria de Fluxo , Humanos , Integrina alfa2beta1/análise , Luciferases/genética , Luciferases/metabolismo , Medições Luminescentes/métodos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/fisiologia , Neoplasias Peritoneais/secundário , Neoplasias Peritoneais/virologia , Peritônio/metabolismo , Peritônio/patologia , Peritônio/virologia , Neoplasias Gástricas/patologia , Neoplasias Gástricas/virologia , Análise de Sobrevida , Transfecção , Carga Tumoral
8.
Prostate ; 68(6): 577-87, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18288643

RESUMO

BACKGROUND: Oncolytic virotherapy offers a unique treatment modality for prostate cancer, especially stages that are resistant to current therapies, with the additional benefit of preferentially targeting tumor cells amongst an environment of healthy tissue. Herein, the low pathogenic enteroviruses; Coxsackievirus A21 (CVA21), as well as a bio-selected variant of Coxsackievirus A21 (CVA21-DAFv) and Echovirus 1 (EV1) are evaluated as novel oncolytic agents against human prostate cancer. METHODS: The surface expression of viral receptors required for enterovirus cell attachment/entry, including intercellular adhesion molecule-1 (ICAM-1), decay-accelerating factor (DAF) and integrin alpha(2)beta(1) on a number of human prostate cancer lines was assessed by flow cytometry. Susceptibility to viral oncolysis was determined via in vitro cell lysis assays performed on cell monolayers cultured in micro titer plates. The in vivo oncolytic efficacy of the enteroviruses was assessed using xenograft models in immune compromised SCID-mice following systemic challenge. RESULTS: The majority of prostate cancer lines tested expressed surface ICAM-1 and/or DAF, or alpha(2)beta(1), facilitating significant degrees of oncolysis following in vitro viral challenge. Systemic delivery of each of the three viruses induced reduction of xenograft tumor burdens in vivo, and a therapeutic dose-response was demonstrated for escalating doses of EV1 in the LNCaP animal model. CONCLUSION: Enteroviruses CVA21, CVA21-DAFv, and EV1 are potentially potent oncolytic agents against human prostate cancer.


Assuntos
Enterovirus Humano A/fisiologia , Enterovirus Humano B/fisiologia , Glicoproteínas de Membrana/metabolismo , Terapia Viral Oncolítica , Vírus Oncolíticos/fisiologia , Neoplasias da Próstata/virologia , Animais , Antígenos CD55/metabolismo , Linhagem Celular Tumoral , Citometria de Fluxo , Humanos , Integrina alfa2beta1/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Organismos Livres de Patógenos Específicos , Replicação Viral , Ensaios Antitumorais Modelo de Xenoenxerto
9.
PLoS One ; 3(3): e1802, 2008 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-18350141

RESUMO

BACKGROUND: The common cold questionnaire (CCQ) is used to discriminate those with and without a viral infection. Its usefulness in people with acute asthma is unknown. Our aim was to assess the ability of the CCQ to detect viral infection and to monitor recovery during a viral induced asthma exacerbation and confirmed by virological testing. METHODOLOGY/PRINCIPAL FINDINGS: We studied subjects (> or =7 yrs) admitted to hospital with acute asthma and diagnosed as positive (n = 63), or negative to viral infection (n = 27) according to molecular and virological testing from respiratory samples. CCQ, asthma history and asthma control questionnaires were completed and repeated 4-6 weeks later. Sensitivity, specificity, and response to change of the CCQ were assessed by receiver operator curve (ROC) analysis and effect size calculation respectively. The CCQ did not discriminate between viral and non-viral infection for subjects with asthma (sensitivity = 76.2%; specificity = 29.6%). ROC analysis could not differentiate between positive or negative virus in subjects with asthma. The CCQ had a large response to change following recovery (effect size = 1.01). 39% of subjects recovering from viral exacerbation remained positive to virological testing at follow-up despite improvement in clinical symptoms. The CCQ reflected clinical improvement in these subjects, thus providing additional information to complement virological testing. CONCLUSIONS/SIGNIFICANCE: The CCQ is a useful instrument for monitoring response to viral infection in people with asthma. Reliable differentiation between viral and non-viral asthma exacerbations was not achieved with the CCQ and requires specific virological testing. When combined with virological testing, the CCQ should be a useful outcome measure for evaluating therapies in viral-induced asthma.


Assuntos
Asma/fisiopatologia , Resfriado Comum/fisiopatologia , Inquéritos e Questionários , Adulto , Criança , Resfriado Comum/virologia , Humanos , Manejo de Espécimes
10.
Br J Haematol ; 137(2): 133-41, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17391493

RESUMO

Oncolytic viruses are attractive biological agents for the control of human malignancy. This study assessed the capacity of Coxsackievirus A21 (CVA21) to target and destroy multiple myeloma (MM) and precursor aberrant plasma cells in vitro using established MM cell lines and 15 patient bone marrow (BM) biopsies [n = 10 MM and five monoclonal gammopathy of undetermined significance (MGUS)]. Cell surface analysis revealed that all tumour cells lines expressed high levels of intercellular adhesion molecule-1 (ICAM-1) and decay-accelerating factor (DAF), the receptor molecules to which CVA21 can bind, leading to subsequent cell-entry and infection. MM cell lines were remarkably susceptible to CVA21 lytic infection, producing 100-1000-fold increases in viral progeny within 24 h. In contrast, normal peripheral blood cells were refractile to CVA21 infection. Furthermore, challenge of patient BM biopsies with CVA21 for 48 h resulted in specific purging of up to 98.7% of CD138+ plasma cells, with no significant decrease in progenitor cell function. Data generated in this study suggests that CVA21 virotherapy may have potential applications as a systemic anti-tumour agent for MM, or in the ex vivo purging of malignant plasma cells prior to autologous stem cell transplantation.


Assuntos
Enterovirus , Mieloma Múltiplo/patologia , Terapia Viral Oncolítica/métodos , Células da Medula Óssea/patologia , Purging da Medula Óssea/métodos , Antígenos CD55/metabolismo , Morte Celular , Técnicas de Cocultura , Ensaio de Unidades Formadoras de Colônias , Enterovirus/fisiologia , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Leucócitos Mononucleares/patologia , Leucócitos Mononucleares/virologia , Mieloma Múltiplo/metabolismo , Proteínas de Neoplasias/metabolismo , Células Tumorais Cultivadas , Replicação Viral
11.
Int J Cancer ; 115(2): 320-8, 2005 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-15688406

RESUMO

A small number of enteroviruses possess the capacity to induce rapid and marked lytic infections in cells of various human malignancies. During screening of representative human enteroviruses for their oncolytic capacity, we observed that echovirus type 1 (EV1) displayed a high level of tropism for human ovarian cancer cells. EV1 is an enterovirus which largely causes asymptomatic infections in humans and whose tissue tropism is primarily regulated via interactions with the I domain of the alpha subunit of cell surface-expressed integrin alpha2beta1. We evaluated the capacity of wild-type EV1 to act as an oncolytic agent of ovarian cancers propagated as cell monolayers, multicellular spheroids or xenografts in SCID mice. EV1 infection of in vitro propagated ovarian cell lines expressing high levels of integrin alpha2beta1 was assessed for specific viral attachment, antibody blockade, induction of cytopathic effect and production of progeny virions. EV1 lytically infected all 8 human ovarian cancer cell lines tested (2008, DOV13, JAM, OVCA-429, OVCAR-3, OVHS-1, OAW-42 and IGROV-1) but not the immortalized normal ovarian surface epithelial cell line (HOSE) or human PBMCs. EV1 challenge was equally effective in the oncolysis of human ovarian cancer cells whether in monolayer or spheroidal environments. The therapeutic efficacy of EV1 was demonstrated by rapid reduction of tumor burden by a single viral intratumoral injection in SCID mice bearing multiple preformed s.c. xenografts. Using an in vivo i.p. human ovarian cancer xenograft model, administration of EV1 was further shown to significantly inhibit the formation and burden of ascites tumors. These findings demonstrate an important proof of principle for employing wild-type EV1 as a potential oncolytic agent in the control of human ovarian cancers.


Assuntos
Enterovirus Humano B/fisiologia , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/virologia , Animais , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Células Epiteliais/virologia , Feminino , Humanos , Integrina alfa2beta1/metabolismo , Camundongos , Camundongos SCID , Neoplasias Ovarianas/metabolismo , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Esferoides Celulares/virologia , Transplante Heterólogo , Células Tumorais Cultivadas , Viremia , Replicação Viral
12.
Am J Respir Crit Care Med ; 172(4): 433-9, 2005 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-15894599

RESUMO

RATIONALE: Virus-induced asthma is characterized by marked neutrophil influx and eosinophil degranulation, suggesting a mode of immunopathogenesis different from that of allergen-induced asthma. OBJECTIVES: This study compared induced sputum cytokine responses in subjects with severe asthma exacerbation and respiratory virus infection with those of patients with stable asthma, healthy control subjects, and virus-infected nonasthmatic subjects. METHODS: Subject infection status and pulmonary history were established on the basis of common cold and asthma questionnaires, and lung function and atopy tests were performed. Respiratory virus infection was diagnosed by cell culture and direct polymerase chain reaction, using induced sputum. The induced sputum cellular profile was examined and cytokine gene expression was assessed by quantitative real-time polymerase chain reaction. RESULTS: A respiratory virus was detected in 78% of subjects with acute asthma. Specific viruses detected were rhinovirus (83%), influenza (15%), enterovirus (4%), and respiratory syncytial virus (2%). Virus-infected subjects with acute asthma or no asthma had increased RANTES (regulated on activation, normal T cell expressed and secreted) and macrophage inflammatory protein-1alpha messenger RNAs compared with other groups. Interleukin (IL)-10 mRNA was significantly increased in virus-infected acute asthma and reduced on recovery from acute asthma. IL-5, eotaxin, and IL-8 mRNA transcripts were similar across groups. CONCLUSIONS: Asthma exacerbation triggered by respiratory virus infection is characterized by increased IL-10 gene expression that may explain the suppressed eosinophil influx in acute asthma. Airway neutrophilia due to respiratory virus infection is associated with chemokine gene expression involving RANTES and macrophage inflammatory protein-1alpha.


Assuntos
Asma/virologia , Interleucina-10/genética , Viroses/metabolismo , Doença Aguda , Adulto , Asma/imunologia , Asma/metabolismo , Estudos de Casos e Controles , Quimiocina CCL4 , Quimiocina CCL5 , Citocinas/metabolismo , Feminino , Expressão Gênica , Humanos , Proteínas Inflamatórias de Macrófagos/metabolismo , Masculino , Reação em Cadeia da Polimerase , RNA Mensageiro/biossíntese , Escarro/química , Escarro/citologia , Viroses/imunologia
13.
J Virol ; 78(22): 12603-12, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15507647

RESUMO

Decay-accelerating factor (DAF) functions as cell attachment receptor for a wide range of human enteroviruses. The Kuykendall prototype strain of coxsackievirus A21 (CVA21) attaches to DAF but requires interactions with intercellular cell adhesion molecule 1 (ICAM-1) to infect cells. We show here that a bioselected variant of CVA21 (CVA21-DAFv) generated by multiple passages in DAF-expressing, ICAM-1-negative rhabdomyosarcoma (RD) cells acquired the capacity to induce rapid and complete lysis of ICAM-1-deficient cells while retaining the capacity to bind ICAM-1. CVA21-DAFv binding to DAF on RD cells mediated lytic infection and was inhibited by either antibody blockade with a specific anti-DAF SCR1 monoclonal antibody (MAb) or soluble human DAF. Despite being bioselected in RD cells, CVA21-DAFv was able to lytically infect an additional ICAM-1-negative cancer cell line via DAF interactions alone. The finding that radiolabeled CVA21-DAFv virions are less readily eluted from surface-expressed DAF than are parental CVA21 virions during a competitive epitope challenge by an anti-DAF SCR1 MAb suggests that interactions between CVA21-DAFv and DAF are of higher affinity than those of the parental strain. Nucleotide sequence analysis of the capsid-coding region of the CVA21-DAFv revealed the presence of two amino acid substitutions in capsid protein VP3 (R96H and E101A), possibly conferring the enhanced DAF-binding phenotype of CVA21-DAFv. These residues are predicted to be embedded at the interface of VP1, VP2, and VP3 and are postulated to enhance the affinity of DAF interaction occurring outside the capsid canyon. Taken together, the data clearly demonstrate an enhanced DAF-using phenotype and expanded receptor utilization of CVA21-DAFv compared to the parental strain, further highlighting that capsid interactions with DAF alone facilitate rapid multicycle lytic cell infection.


Assuntos
Antígenos CD55/fisiologia , Enterovirus/fisiologia , Receptores Virais/fisiologia , Animais , Células CHO , Capsídeo/química , Linhagem Celular Tumoral , Cricetinae , Enterovirus/classificação , Humanos , Molécula 1 de Adesão Intercelular/fisiologia , Fenótipo , Conformação Proteica
14.
J Virol ; 78(3): 1431-9, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14722298

RESUMO

The cellular receptor usage of numerous human enteroviruses can differ significantly between low-cell-culture-passaged clinical isolates and highly laboratory-passaged prototype strains. The prototype strain of coxsackievirus A21 (CVA21) displays a dual-receptor specificity as determined with a receptor complex consisting of decay-accelerating factor (DAF) and intercellular adhesion molecule 1 (ICAM-1). In this study, the cellular receptor interactions of low-cell-passage CVA21 clinical isolates with respect to their interactions with cell surface-expressed DAF and ICAM-1 were compared to those of the CVA21 prototype (Kuykendall) strain. Dual-receptor usage of DAF and ICAM-1 by CVA21 clinical isolates was confirmed by cell transfection and radiolabeled binding assays. The cellular attachment of clinical and prototype CVA21 strains to cells that coexpressed DAF and ICAM-1 was not additive compared to the viral binding to cells expressing one or other receptor. In fact, the binding data suggest there is an inhibition of CVA21 cellular attachment in environments where high-level coexpression of both DAF and ICAM-1 occurs. Antibody cross-linking of DAF rendered cells susceptible to lytic infection by the CVA21 clinical isolates. In a novel finding, three clinical isolates could, to various degrees, infect and lyse DAF-expressing cells in the absence of DAF-antibody cross-linking and ICAM-1 expression. Sequence analysis of the P1 region of clinical and prototype virus genomes identified a number of coding changes that may contribute to the observed enhanced DAF usage phenotype of the clinical CVA21 isolates. None of the amino acid changes was located in the previously postulated ICAM-1 footprint, a receptor-binding environment that was conserved on the capsid surface of all CVA21 clinical isolates. Taken together, the data suggest that community-circulating strains of CVA21 can infect target cells expressing either ICAM-1 or DAF alone and that such interactions extend tissue tropism and impact directly on viral pathogenesis.


Assuntos
Antígenos CD55/metabolismo , Capsídeo/metabolismo , Enterovirus/patogenicidade , Adulto , Sequência de Aminoácidos , Animais , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Linhagem Celular , Criança , Cricetinae , Enterovirus/metabolismo , Infecções por Enterovirus/virologia , Células HeLa , Humanos , Lactente , Molécula 1 de Adesão Intercelular/metabolismo , Masculino , Dados de Sequência Molecular , Alinhamento de Sequência , Análise de Sequência de RNA
15.
Biochem Biophys Res Commun ; 317(4): 1023-9, 2004 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-15094371

RESUMO

Ljungan virus (LV) is proposed as a potentially important rodent harbored viral human pathogen. Little is known about the biophysical nature of the virus and despite being molecularly characterized, progress in epidemiological and basic biological studies of LV has been hampered by the lack of a robust and reliable cell culture propagation system. Here we report the first description of an efficient lytic multi-cycle cell culture propagation of the LV prototype strain (87-012). Biophysical analysis of gradient purified LV virions generated by this system identified mature infectious virions to possess a sedimentation coefficient of 160S and in agreement with previous molecular prediction, polyprotein analysis suggests that the native virion is composed of only three major structural proteins. The nucleotide composition of the complete genome of the LV cell culture adapted virus was determined and compared to that of the parental prototype LV. Numerous mutations were observed scattered throughout the viral genome and particularly in VP1. The development of this cell culture system for LV should open new avenues in the study of LV biology, structure, pathogenesis, and prevalence of natural infection in the wider community.


Assuntos
Picornaviridae/crescimento & desenvolvimento , Cultura de Vírus/métodos , Animais , Células CHO , Proteínas do Capsídeo/química , Proteínas do Capsídeo/metabolismo , Células Cultivadas , Chlorocebus aethiops , Cricetinae , Genoma Viral , Humanos , Macaca mulatta , Camundongos , Mutação , Células NIH 3T3 , Picornaviridae/genética , Células Vero , Vírion/química , Vírion/metabolismo , Replicação Viral
16.
J Virol ; 78(22): 12677-82, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15507656

RESUMO

Decay-accelerating factor (DAF) is involved in the cell membrane attachment of many human enteroviruses. Presently, further specific active roles of DAF in mediating productive cell infection and in the pathogenesis of natural enterovirus infection are poorly understood. In an attempt to more fully understand the role of DAF in lytic cell infection we examined the specific interactions of the prototype strain of coxsackievirus A21 (CVA21) with surface-expressed DAF. Investigations into discrete DAF-CVA21 interactions focused on viral binding; viral particle elution with respect to the parameters of time, temperature, and pH; and subsequent cell infection. Radiolabeled-virus binding assays revealed that peak elution of CVA21 from DAF occurred within 15 min of initial attachment and that the DAF-eluted virus increased in a linear fashion with respect to temperature and pH. CVA21 eluted from endogenous surface-expressed DAF was highly infectious, in contrast to CVA21 eluted from intercellular adhesion molecule 1 (ICAM-1), which retained little to no infectivity. Using an adenovirus transduction system, we demonstrate that CVA21 can remain infectious for up to 24 h after DAF binding and is capable of initiating a multicycle lytic infection upon delayed ICAM-1 surface expression. Taken together, the data suggest that a major role of DAF in cell infection by the prototype strain of CVA21 is to provide membrane concentration of infectious virions, effectively increasing viral interactions with endogenous or induced ICAM-1.


Assuntos
Antígenos CD55/fisiologia , Enterovirus/patogenicidade , Animais , Células CHO , Cricetinae , Concentração de Íons de Hidrogênio , Molécula 1 de Adesão Intercelular/fisiologia
17.
J Gen Virol ; 84(Pt 4): 837-844, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12655084

RESUMO

Ljungan virus (LV) is a suspected human pathogen recently isolated from bank voles in Sweden. This study describes the genetic characterization of a virus, M1146, which was isolated in 1962 from another vole species (Microtus montanus), trapped in Oregon, USA. Based on antigenic properties, M1146 was postulated previously as a putative member of the family PICORNAVIRIDAE: The near complete genomic sequence verifies that M1146 is a member of the Picornaviridae, most closely related to LVs isolated in Sweden. The strain M1146 possesses typical LV genomic organization, including a cluster of two 2A homologues. There are significant differences throughout the capsid protein region, while the non-structural region of M1146 is closely related to the Swedish LV genomes. Genetic and phylogenetic analyses show that M1146 represents a new genotype within the distinct LV cluster. Isolation of LV from both Swedish and American voles trapped over a period of 30 years suggests a continuous worldwide presence.


Assuntos
Arvicolinae/virologia , Picornaviridae/genética , Animais , Sequência de Bases , Proteínas do Capsídeo/genética , Clonagem Molecular , Genótipo , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Oregon , Filogenia , Picornaviridae/classificação , Picornaviridae/isolamento & purificação , Alinhamento de Sequência , Suécia , Proteínas não Estruturais Virais/genética
18.
J Gen Virol ; 84(Pt 11): 3041-3050, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14573809

RESUMO

The cellular receptor complex of coxsackievirus A21 (CVA21), a C-cluster human enterovirus, is formed by the subtle interaction of individual cellular receptors, decay accelerating factor (DAF) and intercellular adhesion molecule-1 (ICAM-1). In this receptor complex, DAF functions in the membrane sequestration of the virus, while the role of ICAM-1 is as the functional cellular internalization receptor. However, despite the elucidation of the CVA21-cell receptor interactions, there have been few definite investigations into cellular receptor usage of other coxsackie A viruses (CVAs) belonging to the C-cluster. In the present study, radiolabelled virus-binding assays demonstrated that CVA13, -15, -18 and -20, a subset of the human enterovirus C-cluster, bind directly to surface-expressed ICAM-1, but not to surface-expressed DAF. Furthermore, lytic infection of ICAM-1-expressing rhabdomyosarcoma (RD) cells by this C-cluster subset of viruses was inhibited by specific ICAM-1 monoclonal antibody blockade, except for that of CVA20. Despite possessing ICAM-1-binding capabilities, CVA20 employed an as yet unidentified internalization receptor for cell entry and subsequent productive lytic infection of ICAM-1-negative RD cells. In a further example of C-cluster cellular receptor heterogeneity, CVA13 exhibited significant binding to the surface of CHO cells expressing neither DAF nor ICAM-1. Despite a common receptor usage of ICAM-1 by this subset of C-cluster CVAs, the amino acid residues postulated to represent the ICAM-1-receptor footprint were not conserved.


Assuntos
Antígenos CD55/fisiologia , Enterovirus/fisiologia , Molécula 1 de Adesão Intercelular/fisiologia , Receptores Virais/fisiologia , Sequência de Aminoácidos , Animais , Células CHO , Proteínas do Capsídeo/química , Cricetinae , Enterovirus/genética , Humanos , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA