Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 179(5): 1222-1238.e17, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31730859

RESUMO

Mitochondrial dysfunction is associated with a spectrum of human conditions, ranging from rare, inborn errors of metabolism to the aging process. To identify pathways that modify mitochondrial dysfunction, we performed genome-wide CRISPR screens in the presence of small-molecule mitochondrial inhibitors. We report a compendium of chemical-genetic interactions involving 191 distinct genetic modifiers, including 38 that are synthetic sick/lethal and 63 that are suppressors. Genes involved in glycolysis (PFKP), pentose phosphate pathway (G6PD), and defense against lipid peroxidation (GPX4) scored high as synthetic sick/lethal. A surprisingly large fraction of suppressors are pathway intrinsic and encode mitochondrial proteins. A striking example of such "intra-organelle" buffering is the alleviation of a chemical defect in complex V by simultaneous inhibition of complex I, which benefits cells by rebalancing redox cofactors, increasing reductive carboxylation, and promoting glycolysis. Perhaps paradoxically, certain forms of mitochondrial dysfunction may best be buffered with "second site" inhibitors to the organelle.


Assuntos
Genes Modificadores , Mitocôndrias/genética , Mitocôndrias/patologia , Autoantígenos/metabolismo , Morte Celular/efeitos dos fármacos , Citosol/efeitos dos fármacos , Citosol/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Epistasia Genética/efeitos dos fármacos , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Genoma , Glutationa Peroxidase/metabolismo , Glicólise/efeitos dos fármacos , Glicólise/genética , Humanos , Células K562 , Mitocôndrias/efeitos dos fármacos , Oligomicinas/toxicidade , Oxirredução , Fosforilação Oxidativa/efeitos dos fármacos , Via de Pentose Fosfato/efeitos dos fármacos , Via de Pentose Fosfato/genética , Espécies Reativas de Oxigênio/metabolismo , Ribonucleoproteínas/metabolismo , Antígeno SS-B
2.
Mol Cell ; 83(23): 4255-4271.e9, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-37995687

RESUMO

Endogenous retroviruses (ERVs) are remnants of ancient parasitic infections and comprise sizable portions of most genomes. Although epigenetic mechanisms silence most ERVs by generating a repressive environment that prevents their expression (heterochromatin), little is known about mechanisms silencing ERVs residing in open regions of the genome (euchromatin). This is particularly important during embryonic development, where induction and repression of distinct classes of ERVs occur in short temporal windows. Here, we demonstrate that transcription-associated RNA degradation by the nuclear RNA exosome and Integrator is a regulatory mechanism that controls the productive transcription of most genes and many ERVs involved in preimplantation development. Disrupting nuclear RNA catabolism promotes dedifferentiation to a totipotent-like state characterized by defects in RNAPII elongation and decreased expression of long genes (gene-length asymmetry). Our results indicate that RNA catabolism is a core regulatory module of gene networks that safeguards RNAPII activity, ERV expression, cell identity, and developmental potency.


Assuntos
Retrovirus Endógenos , Retrovirus Endógenos/genética , RNA Nuclear , Epigênese Genética , Heterocromatina , Expressão Gênica
3.
Nature ; 623(7989): 1034-1043, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37993715

RESUMO

Diet-derived nutrients are inextricably linked to human physiology by providing energy and biosynthetic building blocks and by functioning as regulatory molecules. However, the mechanisms by which circulating nutrients in the human body influence specific physiological processes remain largely unknown. Here we use a blood nutrient compound library-based screening approach to demonstrate that dietary trans-vaccenic acid (TVA) directly promotes effector CD8+ T cell function and anti-tumour immunity in vivo. TVA is the predominant form of trans-fatty acids enriched in human milk, but the human body cannot produce TVA endogenously1. Circulating TVA in humans is mainly from ruminant-derived foods including beef, lamb and dairy products such as milk and butter2,3, but only around 19% or 12% of dietary TVA is converted to rumenic acid by humans or mice, respectively4,5. Mechanistically, TVA inactivates the cell-surface receptor GPR43, an immunomodulatory G protein-coupled receptor activated by its short-chain fatty acid ligands6-8. TVA thus antagonizes the short-chain fatty acid agonists of GPR43, leading to activation of the cAMP-PKA-CREB axis for enhanced CD8+ T cell function. These findings reveal that diet-derived TVA represents a mechanism for host-extrinsic reprogramming of CD8+ T cells as opposed to the intrahost gut microbiota-derived short-chain fatty acids. TVA thus has translational potential for the treatment of tumours.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Ácidos Oleicos , Animais , Bovinos , Humanos , Camundongos , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Laticínios , Ácidos Graxos Voláteis/farmacologia , Ácidos Graxos Voláteis/uso terapêutico , Leite/química , Neoplasias/dietoterapia , Neoplasias/imunologia , Ácidos Oleicos/farmacologia , Ácidos Oleicos/uso terapêutico , Carne Vermelha , Ovinos
4.
Mol Cell ; 81(9): 1905-1919.e12, 2021 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-33852893

RESUMO

Oxidative phosphorylation (OXPHOS) and glycolysis are the two major pathways for ATP production. The reliance on each varies across tissues and cell states, and can influence susceptibility to disease. At present, the full set of molecular mechanisms governing the relative expression and balance of these two pathways is unknown. Here, we focus on genes whose loss leads to an increase in OXPHOS activity. Unexpectedly, this class of genes is enriched for components of the pre-mRNA splicing machinery, in particular for subunits of the U1 snRNP. Among them, we show that LUC7L2 represses OXPHOS and promotes glycolysis by multiple mechanisms, including (1) splicing of the glycolytic enzyme PFKM to suppress glycogen synthesis, (2) splicing of the cystine/glutamate antiporter SLC7A11 (xCT) to suppress glutamate oxidation, and (3) secondary repression of mitochondrial respiratory supercomplex formation. Our results connect LUC7L2 expression and, more generally, the U1 snRNP to cellular energy metabolism.


Assuntos
Glicólise , Fosforilação Oxidativa , Precursores de RNA/metabolismo , Splicing de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/genética , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Ácido Glutâmico/metabolismo , Glicogênio/metabolismo , Glicólise/genética , Células HEK293 , Células HeLa , Humanos , Células K562 , Mitocôndrias/genética , Mitocôndrias/metabolismo , Oxirredução , Fosfofrutoquinase-1 Muscular/genética , Fosfofrutoquinase-1 Muscular/metabolismo , Precursores de RNA/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Ribonucleoproteína Nuclear Pequena U1/genética
5.
Nat Immunol ; 17(6): 656-65, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27043409

RESUMO

Group 2 innate lymphoid cells (ILC2s) regulate tissue inflammation and repair after activation by cell-extrinsic factors such as host-derived cytokines. However, the cell-intrinsic metabolic pathways that control ILC2 function are undefined. Here we demonstrate that expression of the enzyme arginase-1 (Arg1) during acute or chronic lung inflammation is a conserved trait of mouse and human ILC2s. Deletion of mouse ILC-intrinsic Arg1 abrogated type 2 lung inflammation by restraining ILC2 proliferation and dampening cytokine production. Mechanistically, inhibition of Arg1 enzymatic activity disrupted multiple components of ILC2 metabolic programming by altering arginine catabolism, impairing polyamine biosynthesis and reducing aerobic glycolysis. These data identify Arg1 as a key regulator of ILC2 bioenergetics that controls proliferative capacity and proinflammatory functions promoting type 2 inflammation.


Assuntos
Arginase/metabolismo , Linfócitos/fisiologia , Pneumonia/imunologia , Animais , Arginase/genética , Proliferação de Células/genética , Células Cultivadas , Citocinas/metabolismo , Glicólise/genética , Humanos , Imunidade Inata , Ativação Linfocitária/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Poliaminas/metabolismo , Células Th2/imunologia
6.
Cell ; 153(3): 707-20, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23622250

RESUMO

The genetics of complex disease produce alterations in the molecular interactions of cellular pathways whose collective effect may become clear through the organized structure of molecular networks. To characterize molecular systems associated with late-onset Alzheimer's disease (LOAD), we constructed gene-regulatory networks in 1,647 postmortem brain tissues from LOAD patients and nondemented subjects, and we demonstrate that LOAD reconfigures specific portions of the molecular interaction structure. Through an integrative network-based approach, we rank-ordered these network structures for relevance to LOAD pathology, highlighting an immune- and microglia-specific module that is dominated by genes involved in pathogen phagocytosis, contains TYROBP as a key regulator, and is upregulated in LOAD. Mouse microglia cells overexpressing intact or truncated TYROBP revealed expression changes that significantly overlapped the human brain TYROBP network. Thus the causal network structure is a useful predictor of response to gene perturbations and presents a framework to test models of disease mechanisms underlying LOAD.


Assuntos
Doença de Alzheimer/genética , Encéfalo/metabolismo , Redes Reguladoras de Genes , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Doença de Alzheimer/metabolismo , Animais , Teorema de Bayes , Encéfalo/patologia , Humanos , Proteínas de Membrana/metabolismo , Camundongos , Microglia/metabolismo
7.
Nature ; 583(7814): 122-126, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32461692

RESUMO

The cellular NADH/NAD+ ratio is fundamental to biochemistry, but the extent to which it reflects versus drives metabolic physiology in vivo is poorly understood. Here we report the in vivo application of Lactobacillus brevis (Lb)NOX1, a bacterial water-forming NADH oxidase, to assess the metabolic consequences of directly lowering the hepatic cytosolic NADH/NAD+ ratio in mice. By combining this genetic tool with metabolomics, we identify circulating α-hydroxybutyrate levels as a robust marker of an elevated hepatic cytosolic NADH/NAD+ ratio, also known as reductive stress. In humans, elevations in circulating α-hydroxybutyrate levels have previously been associated with impaired glucose tolerance2, insulin resistance3 and mitochondrial disease4, and are associated with a common genetic variant in GCKR5, which has previously been associated with many seemingly disparate metabolic traits. Using LbNOX, we demonstrate that NADH reductive stress mediates the effects of GCKR variation on many metabolic traits, including circulating triglyceride levels, glucose tolerance and FGF21 levels. Our work identifies an elevated hepatic NADH/NAD+ ratio as a latent metabolic parameter that is shaped by human genetic variation and contributes causally to key metabolic traits and diseases. Moreover, it underscores the utility of genetic tools such as LbNOX to empower studies of 'causal metabolism'.


Assuntos
Fígado/metabolismo , NAD/metabolismo , Estresse Fisiológico , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Citosol/metabolismo , Modelos Animais de Doenças , Fatores de Crescimento de Fibroblastos/sangue , Variação Genética , Teste de Tolerância a Glucose , Humanos , Resistência à Insulina , Levilactobacillus brevis/enzimologia , Levilactobacillus brevis/genética , Masculino , Camundongos , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , NADH NADPH Oxirredutases/genética , NADH NADPH Oxirredutases/metabolismo , Oxirredução , Triglicerídeos/sangue
8.
N Engl J Med ; 387(15): 1395-1403, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36239646

RESUMO

We describe the case of identical twin boys who presented with low body weight despite excessive caloric intake. An evaluation of their fibroblasts showed elevated oxygen consumption and decreased mitochondrial membrane potential. Exome analysis revealed a de novo heterozygous variant in ATP5F1B, which encodes the ß subunit of mitochondrial ATP synthase (also called complex V). In yeast, mutations affecting the same region loosen coupling between the proton motive force and ATP synthesis, resulting in high rates of mitochondrial respiration. Expression of the mutant allele in human cell lines recapitulates this phenotype. These data support an autosomal dominant mitochondrial uncoupling syndrome with hypermetabolism. (Funded by the National Institutes of Health.).


Assuntos
Doenças Mitocondriais , ATPases Mitocondriais Próton-Translocadoras , Fosforilação Oxidativa , Consumo de Oxigênio , Humanos , Masculino , Trifosfato de Adenosina/metabolismo , Doenças em Gêmeos/genética , Doenças em Gêmeos/metabolismo , Fibroblastos/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/congênito , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Mutação , Consumo de Oxigênio/genética , Consumo de Oxigênio/fisiologia , Gêmeos Monozigóticos/genética
9.
Ann Surg Oncol ; 31(3): 1898-1905, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37968411

RESUMO

OBJECTIVE: Postoperative pancreatic fistula is a potentially devastating complication after pancreatoduodenectomy (PD). The purpose of this study was to identify features on preoperative computed tomography (CT) imaging that correlate with an increased risk of postoperative pancreatic fistula (POPF). METHODS: Patients who underwent PD at our high-volume pancreatic surgery center from 2019 to 2021 were included if CT imaging was available within 8 weeks of surgical intervention. Pancreatic neck thickness (PNT), abdominal wall thickness (AWT), and intra-abdominal distance from pancreas to peritoneum (PTP) were measured by two board-certified radiologists who were blinded to the clinical outcomes. Radiographic measurements, as well as preoperative patient characteristics and intraoperative data, were assessed with univariate and multivariable analysis (MVA) to determine risk for clinically relevant POPF (CR-POPF, grades B and C). RESULTS: A total of 204 patients met inclusion criteria. Median PTP was 5.8 cm, AWT 1.9 cm, and PNT 1.3 cm. CR-POPF occurred in 33 of 204 (16.2%) patients. MVA revealed PTP > 5.8 cm (odds ratio [OR] 2.86, p = 0.023), PNT > 1.3 cm (OR 2.43, p = 0.047), soft pancreas consistency (OR 3.47, p = 0.012), and pancreatic duct size ≤ 3.0 mm (OR 4.55, p = 0.01) as independent risk factors for CR-POPF after PD. AWT and obesity were not associated with increased risk of CR-POPF. Patients with PTP > 5.8 cm or PNT > 1.3 cm were significantly more likely to suffer a major complication after PD (39.6% vs. 22.3% and 40% vs. 22.1%, p < 0.008). CONCLUSIONS: Patients with a thick pancreatic neck and increased intra-abdominal girth have a heightened risk of CR-POPF after pancreatoduodenectomy, and they experience more serious postoperative complications. We defined a simple CT scan-based measurement tool to identify patients at increased risk of CR-POPF.


Assuntos
Fístula Pancreática , Pancreaticoduodenectomia , Humanos , Fístula Pancreática/etiologia , Pancreaticoduodenectomia/efeitos adversos , Pâncreas/cirurgia , Ductos Pancreáticos/cirurgia , Fatores de Risco , Complicações Pós-Operatórias/etiologia , Estudos Retrospectivos
10.
Metabolomics ; 20(2): 36, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446263

RESUMO

INTRODUCTION: Sepsis is a highly morbid condition characterized by multi-organ dysfunction resulting from dysregulated inflammation in response to acute infection. Mitochondrial dysfunction may contribute to sepsis pathogenesis, but quantifying mitochondrial dysfunction remains challenging. OBJECTIVE: To assess the extent to which circulating markers of mitochondrial dysfunction are increased in septic shock, and their relationship to severity and mortality. METHODS: We performed both full-scan and targeted (known markers of genetic mitochondrial disease) metabolomics on plasma to determine markers of mitochondrial dysfunction which distinguish subjects with septic shock (n = 42) from cardiogenic shock without infection (n = 19), bacteremia without sepsis (n = 18), and ambulatory controls (n = 19) - the latter three being conditions in which mitochondrial function, proxied by peripheral oxygen consumption, is presumed intact. RESULTS: Nine metabolites were significantly increased in septic shock compared to all three comparator groups. This list includes N-formyl-L-methionine (f-Met), a marker of dysregulated mitochondrial protein translation, and N-lactoyl-phenylalanine (lac-Phe), representative of the N-lactoyl-amino acids (lac-AAs), which are elevated in plasma of patients with monogenic mitochondrial disease. Compared to lactate, the clinical biomarker used to define septic shock, there was greater separation between survivors and non-survivors of septic shock for both f-Met and the lac-AAs measured within 24 h of ICU admission. Additionally, tryptophan was the one metabolite significantly decreased in septic shock compared to all other groups, while its breakdown product kynurenate was one of the 9 significantly increased. CONCLUSION: Future studies which validate the measurement of lac-AAs and f-Met in conjunction with lactate could define a sepsis subtype characterized by mitochondrial dysfunction.


Assuntos
Doenças Mitocondriais , Sepse , Choque Séptico , Humanos , Aminoácidos , N-Formilmetionina , Metabolômica , Metionina , Ácido Láctico , Racemetionina
11.
Biochemistry ; 62(21): 3126-3133, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37884446

RESUMO

The protein PARK7 (also known as DJ-1) has been implicated in several diseases, with the most notable being Parkinson's disease. While several molecular and cellular roles have been ascribed to DJ-1, there is no real consensus on what its true cellular functions are and how the loss of DJ-1 function may contribute to the pathogenesis of Parkinson's disease. Recent reports have implicated DJ-1 in the detoxification of several reactive metabolites that are produced during glycolytic metabolism, with the most notable being the α-oxoaldehyde species methylglyoxal. While it is generally agreed that DJ-1 is able to metabolize methylglyoxal to lactate, the mechanism by which it does so is hotly debated with potential implications for cellular function. In this work, we provide definitive evidence that recombinant DJ-1 produced in human cells prevents the stable glycation of other proteins through the conversion of methylglyoxal or a related alkynyl dicarbonyl probe to their corresponding α-hydroxy carboxylic acid products. This protective action of DJ-1 does not require a physical interaction with a target protein, providing direct evidence for a glutathione-free glyoxalase and not a deglycase mechanism of methylglyoxal detoxification. Stereospecific liquid chromatography-mass spectrometry (LC-MS) measurements further uncovered the existence of nonenzymatic production of racemic lactate from MGO under physiological buffer conditions, whereas incubation with DJ-1 predominantly produces l-lactate. Collectively, these studies provide direct support for the stereospecific conversion of MGO to l-lactate by DJ-1 in solution with negligible or no contribution of direct protein deglycation.


Assuntos
Doença de Parkinson , Aldeído Pirúvico , Humanos , Aldeído Pirúvico/química , Aldeído Pirúvico/metabolismo , Doença de Parkinson/metabolismo , Óxido de Magnésio , Ácido Láctico , Proteína Desglicase DJ-1
12.
Nucleic Acids Res ; 49(D1): D1541-D1547, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33174596

RESUMO

The mammalian mitochondrial proteome is under dual genomic control, with 99% of proteins encoded by the nuclear genome and 13 originating from the mitochondrial DNA (mtDNA). We previously developed MitoCarta, a catalogue of over 1000 genes encoding the mammalian mitochondrial proteome. This catalogue was compiled using a Bayesian integration of multiple sequence features and experimental datasets, notably protein mass spectrometry of mitochondria isolated from fourteen murine tissues. Here, we introduce MitoCarta3.0. Beginning with the MitoCarta2.0 inventory, we performed manual review to remove 100 genes and introduce 78 additional genes, arriving at an updated inventory of 1136 human genes. We now include manually curated annotations of sub-mitochondrial localization (matrix, inner membrane, intermembrane space, outer membrane) as well as assignment to 149 hierarchical 'MitoPathways' spanning seven broad functional categories relevant to mitochondria. MitoCarta3.0, including sub-mitochondrial localization and MitoPathway annotations, is freely available at http://www.broadinstitute.org/mitocarta and should serve as a continued community resource for mitochondrial biology and medicine.


Assuntos
Bases de Dados de Proteínas , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Anotação de Sequência Molecular , Proteoma/metabolismo , Animais , Teorema de Bayes , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Conjuntos de Dados como Assunto , Humanos , Internet , Aprendizado de Máquina , Espectrometria de Massas , Camundongos , Mitocôndrias/genética , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/classificação , Proteínas Mitocondriais/genética , Proteoma/classificação , Proteoma/genética , Software
13.
Genes Dev ; 29(9): 934-47, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25934505

RESUMO

MAF1 is a global repressor of RNA polymerase III transcription that regulates the expression of highly abundant noncoding RNAs in response to nutrient availability and cellular stress. Thus, MAF1 function is thought to be important for metabolic economy. Here we show that a whole-body knockout of Maf1 in mice confers resistance to diet-induced obesity and nonalcoholic fatty liver disease by reducing food intake and increasing metabolic inefficiency. Energy expenditure in Maf1(-/-) mice is increased by several mechanisms. Precursor tRNA synthesis was increased in multiple tissues without significant effects on mature tRNA levels, implying increased turnover in a futile tRNA cycle. Elevated futile cycling of hepatic lipids was also observed. Metabolite profiling of the liver and skeletal muscle revealed elevated levels of many amino acids and spermidine, which links the induction of autophagy in Maf1(-/-) mice with their extended life span. The increase in spermidine was accompanied by reduced levels of nicotinamide N-methyltransferase, which promotes polyamine synthesis, enables nicotinamide salvage to regenerate NAD(+), and is associated with obesity resistance. Consistent with this, NAD(+) levels were increased in muscle. The importance of MAF1 for metabolic economy reveals the potential for MAF1 modulators to protect against obesity and its harmful consequences.


Assuntos
Proteínas Repressoras/genética , Animais , Autofagia/genética , Ingestão de Alimentos/genética , Metabolismo Energético/genética , Metabolismo dos Lipídeos/genética , Longevidade/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/genética , Obesidade/genética , RNA de Transferência/metabolismo , Espermidina/metabolismo
14.
Genome Res ; 29(1): 146-156, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30409771

RESUMO

Cannabis sativa is widely cultivated for medicinal, food, industrial, and recreational use, but much remains unknown regarding its genetics, including the molecular determinants of cannabinoid content. Here, we describe a combined physical and genetic map derived from a cross between the drug-type strain Purple Kush and the hemp variety "Finola." The map reveals that cannabinoid biosynthesis genes are generally unlinked but that aromatic prenyltransferase (AP), which produces the substrate for THCA and CBDA synthases (THCAS and CBDAS), is tightly linked to a known marker for total cannabinoid content. We further identify the gene encoding CBCA synthase (CBCAS) and characterize its catalytic activity, providing insight into how cannabinoid diversity arises in cannabis. THCAS and CBDAS (which determine the drug vs. hemp chemotype) are contained within large (>250 kb) retrotransposon-rich regions that are highly nonhomologous between drug- and hemp-type alleles and are furthermore embedded within ∼40 Mb of minimally recombining repetitive DNA. The chromosome structures are similar to those in grains such as wheat, with recombination focused in gene-rich, repeat-depleted regions near chromosome ends. The physical and genetic map should facilitate further dissection of genetic and molecular mechanisms in this commercially and medically important plant.


Assuntos
Canabinoides , Cannabis , Mapeamento Cromossômico , Cromossomos de Plantas , Ligases , Proteínas de Plantas , Canabinoides/biossíntese , Canabinoides/genética , Cannabis/genética , Cannabis/metabolismo , Cromossomos de Plantas/genética , Cromossomos de Plantas/metabolismo , Rearranjo Gênico , Ligases/genética , Ligases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
15.
Am J Pathol ; 191(12): 2064-2071, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34506752

RESUMO

Current understanding of coronavirus disease 2019 (COVID-19) pathophysiology is limited by disease heterogeneity, complexity, and a paucity of studies assessing patient tissues with advanced molecular tools. Rapid autopsy tissues were evaluated using multiscale, next-generation RNA-sequencing methods (bulk, single-nuclei, and spatial transcriptomics) to provide unprecedented molecular resolution of COVID-19-induced damage. Comparison of infected/uninfected tissues revealed four major regulatory pathways. Effectors within these pathways could constitute novel therapeutic targets, including the complement receptor C3AR1, calcitonin receptor-like receptor, or decorin. Single-nuclei RNA sequencing of olfactory bulb and prefrontal cortex highlighted remarkable diversity of coronavirus receptors. Angiotensin-converting enzyme 2 was rarely expressed, whereas basigin showed diffuse expression, and alanyl aminopeptidase, membrane, was associated with vascular/mesenchymal cell types. Comparison of lung and lymph node tissues from patients with different symptoms (one had died after a month-long hospitalization with multiorgan involvement, and the other had died after a few days of respiratory symptoms) with digital spatial profiling resulted in distinct molecular phenotypes. Evaluation of COVID-19 rapid autopsy tissues with advanced molecular techniques can identify pathways and effectors, map diverse receptors at the single-cell level, and help dissect differences driving diverging clinical courses among individual patients. Extension of this approach to larger data sets will substantially advance the understanding of the mechanisms behind COVID-19 pathophysiology.


Assuntos
COVID-19/genética , COVID-19/patologia , SARS-CoV-2/patogenicidade , Autopsia , Progressão da Doença , Perfilação da Expressão Gênica , Coração/virologia , Interações Hospedeiro-Patógeno/genética , Humanos , Rim/metabolismo , Rim/patologia , Rim/virologia , Fígado/metabolismo , Fígado/patologia , Fígado/virologia , Masculino , Pessoa de Meia-Idade , Miocárdio/metabolismo , Miocárdio/patologia , Bulbo Olfatório/metabolismo , Bulbo Olfatório/patologia , Bulbo Olfatório/virologia , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Córtex Pré-Frontal/virologia , Sistema Respiratório/metabolismo , Sistema Respiratório/patologia , Sistema Respiratório/virologia , Glândulas Salivares/metabolismo , Glândulas Salivares/patologia , Glândulas Salivares/virologia , Análise de Sequência de RNA , Transdução de Sinais/genética
16.
Am J Nephrol ; 53(5): 352-360, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35462372

RESUMO

BACKGROUND: Desidustat, an oral hypoxia-inducible factor prolyl hydroxylase inhibitor, is being developed to treat anemia in patients with chronic kidney disease (CKD) without dialysis dependency. METHODS: In total, 588 patients with a clinical diagnosis of anemia due to CKD without dialysis need and with baseline hemoglobin of 7.0-10.0 g/dL (inclusive) were randomized in a 1:1 ratio to receive either desidustat 100 mg oral tablets thrice a week for 24 weeks or biosimilar darbepoetin subcutaneous injection 0.75 µg/kg once in 2 weeks for 24 weeks. The primary outcome was the change from baseline in hemoglobin to evaluation period of Weeks 16-24. Key secondary outcomes included the number of patients with hemoglobin response, changes in the hepcidin levels, changes in the vascular endothelial growth factor (VEGF) levels, and changes in the lipid and lipoprotein profiles. RESULTS: Hemoglobin change from baseline to Weeks 16-24 was 1.95 g/dL in the desidustat group and 1.83 g/dL in the darbepoetin group (difference: 0.11 g/dL; 95% CI: -0.12, 0.34), which met prespecified non-inferiority margin (-0.75 g/dL). The hemoglobin responders were significantly higher (p = 0.0181) in the desidustat group (196 [77.78%]) compared to the darbepoetin group (176 [68.48%]). The difference of change in hepcidin from baseline to Week 12 and Week 24 (p = 0.0032 at Week 12, p = 0.0016 at Week 24) and the difference of change in low-density lipoprotein from baseline to Week 24 (p value = 0.0269) between the two groups was statistically significant. The difference of change from baseline in VEGF to Weeks 12 and 24 between the two groups was not statistically significant. CONCLUSION: Desidustat is non-inferior to darbepoetin in the treatment of anemia due to non-dialysis dependent CKD and it is well-tolerated.


Assuntos
Anemia , Eritropoetina , Hematínicos , Insuficiência Renal Crônica , Anemia/complicações , Anemia/etiologia , Darbepoetina alfa/uso terapêutico , Eritropoetina/uso terapêutico , Hematínicos/uso terapêutico , Hemoglobinas/metabolismo , Hepcidinas , Humanos , Quinolonas , Diálise Renal , Insuficiência Renal Crônica/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular
17.
Nature ; 533(7604): 493-498, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27225120

RESUMO

Brain metastasis represents a substantial source of morbidity and mortality in various cancers, and is characterized by high resistance to chemotherapy. Here we define the role of the most abundant cell type in the brain, the astrocyte, in promoting brain metastasis. We show that human and mouse breast and lung cancer cells express protocadherin 7 (PCDH7), which promotes the assembly of carcinoma-astrocyte gap junctions composed of connexin 43 (Cx43). Once engaged with the astrocyte gap-junctional network, brain metastatic cancer cells use these channels to transfer the second messenger cGAMP to astrocytes, activating the STING pathway and production of inflammatory cytokines such as interferon-α (IFNα) and tumour necrosis factor (TNF). As paracrine signals, these factors activate the STAT1 and NF-κB pathways in brain metastatic cells, thereby supporting tumour growth and chemoresistance. The orally bioavailable modulators of gap junctions meclofenamate and tonabersat break this paracrine loop, and we provide proof-of-principle that these drugs could be used to treat established brain metastasis.


Assuntos
Astrócitos/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/secundário , Junções Comunicantes/metabolismo , Nucleotídeos Cíclicos/metabolismo , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Benzamidas/farmacologia , Benzamidas/uso terapêutico , Benzopiranos/farmacologia , Benzopiranos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias da Mama/patologia , Caderinas/metabolismo , Linhagem Celular Tumoral , Técnicas de Cocultura , Conexina 43/metabolismo , Resistencia a Medicamentos Antineoplásicos , Feminino , Junções Comunicantes/efeitos dos fármacos , Humanos , Imunidade Inata , Interferon-alfa/metabolismo , Neoplasias Pulmonares/patologia , Ácido Meclofenâmico/farmacologia , Ácido Meclofenâmico/uso terapêutico , Proteínas de Membrana/metabolismo , Camundongos , NF-kappa B/metabolismo , Comunicação Parácrina/efeitos dos fármacos , Protocaderinas , Fator de Transcrição STAT1/metabolismo , Fatores de Necrose Tumoral/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Mol Genet Metab ; 133(1): 83-93, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33752971

RESUMO

Leigh syndrome is a severe mitochondrial neurodegenerative disease with no effective treatment. In the Ndufs4-/- mouse model of Leigh syndrome, continuously breathing 11% O2 (hypoxia) prevents neurodegeneration and leads to a dramatic extension (~5-fold) in lifespan. We investigated the effect of hypoxia on the brain metabolism of Ndufs4-/- mice by studying blood gas tensions and metabolite levels in simultaneously sampled arterial and cerebral internal jugular venous (IJV) blood. Relatively healthy Ndufs4-/- and wildtype (WT) mice breathing air until postnatal age ~38 d were compared to Ndufs4-/- and WT mice breathing air until ~38 days old followed by 4-weeks of breathing 11% O2. Compared to WT control mice, Ndufs4-/- mice breathing air have reduced brain O2 consumption as evidenced by an elevated partial pressure of O2 in IJV blood (PijvO2) despite a normal PO2 in arterial blood, and higher lactate/pyruvate (L/P) ratios in IJV plasma revealed by metabolic profiling. In Ndufs4-/- mice, hypoxia treatment normalized the cerebral venous PijvO2 and L/P ratios, and decreased levels of nicotinate in IJV plasma. Brain concentrations of nicotinamide adenine dinucleotide (NAD+) were lower in Ndufs4-/- mice breathing air than in WT mice, but preserved at WT levels with hypoxia treatment. Although mild hypoxia (17% O2) has been shown to be an ineffective therapy for Ndufs4-/- mice, we find that when combined with nicotinic acid supplementation it provides a modest improvement in neurodegeneration and lifespan. Therapies targeting both brain hyperoxia and NAD+ deficiency may hold promise for treating Leigh syndrome.


Assuntos
Encéfalo/metabolismo , Complexo I de Transporte de Elétrons/genética , Doença de Leigh/metabolismo , NAD/genética , Oxigênio/metabolismo , Animais , Encéfalo/patologia , Hipóxia Celular/fisiologia , Modelos Animais de Doenças , Complexo I de Transporte de Elétrons/metabolismo , Humanos , Doença de Leigh/genética , Doença de Leigh/terapia , Metabolômica , Camundongos , Mitocôndrias , NAD/deficiência , Doenças Neurodegenerativas , Respiração/genética
19.
Radiographics ; 41(6): 1592-1610, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34597230

RESUMO

Cystic hepatobiliary neoplasms with mucin-producing epithelium-mucinous cystic neoplasm of the liver (MCN) and intraductal papillary neoplasm of the bile duct (IPNB)-are rare and distinct entities that have unique clinical, pathologic, and imaging features. They are differentiated pathologically by the presence of subepithelial ovarian-like hypercellular stroma (OLS), which is the defining histopathologic feature of MCN. MCN is commonly a benign, large, solitary, symptomatic, multiloculated cystic mass without biliary communication that occurs in middle-aged women. On the other hand, IPNBs are a heterogeneous spectrum of tumors, which are commonly associated with invasive carcinoma, occur in older patients, and can be differentiated from MCN by communication with the biliary tree, intraductal masses, associated biliary ductal dilatation, and absent OLS. Understanding of these rare neoplasms has grown and evolved over time and continues to today, but uncertainty and controversy persist, related to the rarity of these tumors, relatively recent designation as separate entities, inherent clinicopathologic heterogeneity, overlapping imaging features, and the fact that many prior studies likely included MCN and cystic IPNB together as a single entity. Confusion regarding these neoplasms is evident by historical inconsistencies and nonstandardized nomenclature through the years. Awareness of these entities is important for the interpreting radiologist to suggest a particular diagnosis or generate a meaningful differential diagnosis in the appropriate setting, and is of particular significance as MCN and cystic IPNB have overlapping imaging features with other more common hepatobiliary cystic masses but have different management and prognosis. Online supplemental material is available for this article. Work of the U.S. Government published under an exclusive license with the RSNA.


Assuntos
Neoplasias dos Ductos Biliares , Neoplasias Gastrointestinais , Neoplasias Pancreáticas , Idoso , Neoplasias dos Ductos Biliares/diagnóstico por imagem , Diagnóstico Diferencial , Feminino , Humanos , Pessoa de Meia-Idade , Mucinas , Prognóstico
20.
Hum Mutat ; 41(4): 800-806, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31898844

RESUMO

The mechanisms underlying de novo insertion/deletion (indel) genesis, such as polymerase slippage, have been hypothesized but not well characterized in the human genome. We implemented two methodological improvements, which were leveraged to dissect indel mutagenesis. We assigned de novo variants to parent-of-origin (i.e., phasing) with low-coverage long-read whole-genome sequencing, achieving better phasing compared to short-read sequencing (medians of 84% and 23%, respectively). We then wrote an application programming interface to classify indels into three subtypes according to sequence context. Across three cohorts with different phasing methods (Ntrios = 540, all cohorts), we observed that one de novo indel subtype, change in copy count (CCC), was significantly correlated with father's (p = 7.1 × 10-4 ) but not mother's (p = .45) age at conception. We replicated this effect in three cohorts without de novo phasing (ppaternal = 1.9 × 10-9 , pmaternal = .61; Ntrios = 3,391, all cohorts). Although this is consistent with polymerase slippage during spermatogenesis, the percentage of variance explained by paternal age was low, and we did not observe an association with replication timing. These results suggest that spermatogenesis-specific events have a minor role in CCC indel mutagenesis, one not observed for other indel subtypes nor for maternal age in general. These results have implications for indel modeling in evolution and disease.


Assuntos
Biologia Computacional/métodos , Genoma Humano , Genômica/métodos , Mutação INDEL , Software , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA