Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 175(7): 1931-1945.e18, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30550790

RESUMO

Mosquito-borne flaviviruses, including dengue virus (DENV) and Zika virus (ZIKV), are a growing public health concern. Systems-level analysis of how flaviviruses hijack cellular processes through virus-host protein-protein interactions (PPIs) provides information about their replication and pathogenic mechanisms. We used affinity purification-mass spectrometry (AP-MS) to compare flavivirus-host interactions for two viruses (DENV and ZIKV) in two hosts (human and mosquito). Conserved virus-host PPIs revealed that the flavivirus NS5 protein suppresses interferon stimulated genes by inhibiting recruitment of the transcription complex PAF1C and that chemical modulation of SEC61 inhibits DENV and ZIKV replication in human and mosquito cells. Finally, we identified a ZIKV-specific interaction between NS4A and ANKLE2, a gene linked to hereditary microcephaly, and showed that ZIKV NS4A causes microcephaly in Drosophila in an ANKLE2-dependent manner. Thus, comparative flavivirus-host PPI mapping provides biological insights and, when coupled with in vivo models, can be used to unravel pathogenic mechanisms.


Assuntos
Vírus da Dengue , Dengue , Proteínas de Membrana , Proteínas Nucleares , Proteínas não Estruturais Virais , Infecção por Zika virus , Zika virus , Animais , Linhagem Celular Tumoral , Culicidae , Dengue/genética , Dengue/metabolismo , Dengue/patologia , Vírus da Dengue/genética , Vírus da Dengue/metabolismo , Vírus da Dengue/patogenicidade , Células HEK293 , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Mapeamento de Interação de Proteínas , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Zika virus/genética , Zika virus/metabolismo , Zika virus/patogenicidade , Infecção por Zika virus/genética , Infecção por Zika virus/metabolismo , Infecção por Zika virus/patologia
2.
Proc Natl Acad Sci U S A ; 120(23): e2220005120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252973

RESUMO

Dengue virus (DENV) is the most important human virus transmitted by mosquitos. Dengue pathogenesis is characterized by a large induction of proinflammatory cytokines. This cytokine induction varies among the four DENV serotypes (DENV1 to 4) and poses a challenge for live DENV vaccine design. Here, we identify a viral mechanism to limit NF-κB activation and cytokine secretion by the DENV protein NS5. Using proteomics, we found that NS5 binds and degrades the host protein ERC1 to antagonize NF-κB activation, limit proinflammatory cytokine secretion, and reduce cell migration. We found that ERC1 degradation involves unique properties of the methyltransferase domain of NS5 that are not conserved among the four DENV serotypes. By obtaining chimeric DENV2 and DENV4 viruses, we map the residues in NS5 for ERC1 degradation, and generate recombinant DENVs exchanging serotype properties by single amino acid substitutions. This work uncovers a function of the viral protein NS5 to limit cytokine production, critical to dengue pathogenesis. Importantly, the information provided about the serotype-specific mechanism for counteracting the antiviral response can be applied to improve live attenuated vaccines.


Assuntos
Vírus da Dengue , Dengue , Proteínas não Estruturais Virais , Humanos , Citocinas , NF-kappa B/metabolismo , Sorogrupo , Proteínas não Estruturais Virais/metabolismo
3.
PLoS Pathog ; 19(4): e1011317, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37071661

RESUMO

Metabolism is key to cellular processes that underlie the ability of a virus to productively infect. Polyamines are small metabolites vital for many host cell processes including proliferation, transcription, and translation. Polyamine depletion also inhibits virus infection via diverse mechanisms, including inhibiting polymerase activity and viral translation. We showed that Coxsackievirus B3 (CVB3) attachment requires polyamines; however, the mechanism was unknown. Here, we report polyamines' involvement in translation, through a process called hypusination, promotes expression of cholesterol synthesis genes by supporting SREBP2 synthesis, the master transcriptional regulator of cholesterol synthesis genes. Measuring bulk transcription, we find polyamines support expression of cholesterol synthesis genes, regulated by SREBP2. Thus, polyamine depletion inhibits CVB3 by depleting cellular cholesterol. Exogenous cholesterol rescues CVB3 attachment, and mutant CVB3 resistant to polyamine depletion exhibits resistance to cholesterol perturbation. This study provides a novel link between polyamine and cholesterol homeostasis, a mechanism through which polyamines impact CVB3 infection.


Assuntos
Infecções por Coxsackievirus , Infecções por Enterovirus , Enterovirus , Humanos , Enterovirus/metabolismo , Poliaminas/metabolismo , Replicação Viral , Enterovirus Humano B
4.
PLoS Pathog ; 19(1): e1011070, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36603024

RESUMO

Zika virus (ZIKV) infects fetal neural progenitor cells (NPCs) causing severe neurodevelopmental disorders in utero. Multiple pathways involved in normal brain development are dysfunctional in infected NPCs but how ZIKV centrally reprograms these pathways remains unknown. Here we show that ZIKV infection disrupts subcellular partitioning of host transcripts critical for neurodevelopment in NPCs and functionally link this process to the up-frameshift protein 1 (UPF1). UPF1 is an RNA-binding protein known to regulate decay of cellular and viral RNAs and is less expressed in ZIKV-infected cells. Using infrared crosslinking immunoprecipitation and RNA sequencing (irCLIP-Seq), we show that a subset of mRNAs loses UPF1 binding in ZIKV-infected NPCs, consistent with UPF1's diminished expression. UPF1 target transcripts, however, are not altered in abundance but in subcellular localization, with mRNAs accumulating in the nucleus of infected or UPF1 knockdown cells. This leads to diminished protein expression of FREM2, a protein required for maintenance of NPC identity. Our results newly link UPF1 to the regulation of mRNA transport in NPCs, a process perturbed during ZIKV infection.


Assuntos
Células-Tronco Neurais , Infecção por Zika virus , Zika virus , Humanos , Encéfalo/metabolismo , Encéfalo/virologia , Células-Tronco Neurais/virologia , RNA Helicases/genética , RNA Helicases/metabolismo , Transativadores/metabolismo , Replicação Viral , Zika virus/fisiologia , Infecção por Zika virus/genética
5.
Immunity ; 44(1): 46-58, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26789921

RESUMO

Viruses are obligate parasites and thus require the machinery of the host cell to replicate. Inhibition of host factors co-opted during active infection is a strategy hosts use to suppress viral replication and a potential pan-antiviral therapy. To define the cellular proteins and processes required for a virus during infection is thus crucial to understanding the mechanisms of virally induced disease. In this report, we generated fully infectious tagged influenza viruses and used infection-based proteomics to identify pivotal arms of cellular signaling required for influenza virus growth and infectivity. Using mathematical modeling and genetic and pharmacologic approaches, we revealed that modulation of Sec61-mediated cotranslational translocation selectively impaired glycoprotein proteostasis of influenza as well as HIV and dengue viruses and led to inhibition of viral growth and infectivity. Thus, by studying virus-human protein-protein interactions in the context of active replication, we have identified targetable host factors for broad-spectrum antiviral therapies.


Assuntos
Interações Hospedeiro-Parasita/fisiologia , Vírus da Influenza A/fisiologia , Vírus da Influenza A/patogenicidade , Modelos Teóricos , Replicação Viral/fisiologia , Vírus da Dengue/patogenicidade , Vírus da Dengue/fisiologia , HIV/patogenicidade , HIV/fisiologia , Humanos , Imunoprecipitação , Espectrometria de Massas , Dobramento de Proteína , Proteômica
6.
PLoS Biol ; 20(11): e3001851, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36346780

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), responsible for the Coronavirus Disease 2019 (COVID-19) pandemic, causes respiratory failure and damage to multiple organ systems. The emergence of viral variants poses a risk of vaccine failures and prolongation of the pandemic. However, our understanding of the molecular basis of SARS-CoV-2 infection and subsequent COVID-19 pathophysiology is limited. In this study, we have uncovered a critical role for the evolutionarily conserved Hippo signaling pathway in COVID-19 pathogenesis. Given the complexity of COVID-19-associated cell injury and immunopathogenesis processes, we investigated Hippo pathway dynamics in SARS-CoV-2 infection by utilizing COVID-19 lung samples and human cell models based on pluripotent stem cell-derived cardiomyocytes (PSC-CMs) and human primary lung air-liquid interface (ALI) cultures. SARS-CoV-2 infection caused activation of the Hippo signaling pathway in COVID-19 lung and in vitro cultures. Both parental and Delta variant of concern (VOC) strains induced Hippo pathway. The chemical inhibition and gene knockdown of upstream kinases MST1/2 and LATS1 resulted in significantly enhanced SARS-CoV-2 replication, indicating antiviral roles. Verteporfin, a pharmacological inhibitor of the Hippo pathway downstream transactivator, YAP, significantly reduced virus replication. These results delineate a direct antiviral role for Hippo signaling in SARS-CoV-2 infection and the potential for this pathway to be pharmacologically targeted to treat COVID-19.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Via de Sinalização Hippo , Antivirais/farmacologia
7.
J Proteome Res ; 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38556766

RESUMO

Protein-protein interactions (PPIs) are at the heart of the molecular landscape permeating life. Proteomics studies can explore this protein interaction landscape using mass spectrometry (MS). Thanks to their high sensitivity, mass spectrometers can easily identify thousands of proteins within a single sample, but that same sensitivity generates tangled spiderwebs of data that hide biologically relevant findings. So, what does a researcher do when she finds herself walking into spiderwebs? In a field focused on discovery, MS data require rigor in their analysis, experimental validation, or a combination of both. In this Review, we provide a brief primer on MS-based experimental methods to identify PPIs. We discuss approaches to analyze the resulting data and remove the proteomic background. We consider the advantages between comprehensive and targeted studies. We also discuss how scoring might be improved through AI-based protein structure information. Women have been essential to the development of proteomics, so we will specifically highlight work by women that has made this field thrive in recent years.

8.
BMC Plant Biol ; 24(1): 262, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38594614

RESUMO

BACKGROUND: Foliar diseases namely late leaf spot (LLS) and leaf rust (LR) reduce yield and deteriorate fodder quality in groundnut. Also the high oleic acid content has emerged as one of the most important traits for industries and consumers due to its increased shelf life and health benefits. RESULTS: Genetic mapping combined with pooled sequencing approaches identified candidate resistance genes (LLSR1 and LLSR2 for LLS and LR1 for LR) for both foliar fungal diseases. The LLS-A02 locus housed LLSR1 gene for LLS resistance, while, LLS-A03 housed LLSR2 and LR1 genes for LLS and LR resistance, respectively. A total of 49 KASPs markers were developed from the genomic regions of important disease resistance genes, such as NBS-LRR, purple acid phosphatase, pentatricopeptide repeat-containing protein, and serine/threonine-protein phosphatase. Among the 49 KASP markers, 41 KASPs were validated successfully on a validation panel of contrasting germplasm and breeding lines. Of the 41 validated KASPs, 39 KASPs were designed for rust and LLS resistance, while two KASPs were developed using fatty acid desaturase (FAD) genes to control high oleic acid levels. These validated KASP markers have been extensively used by various groundnut breeding programs across the world which led to development of thousands of advanced breeding lines and few of them also released for commercial cultivation. CONCLUSION: In this study, high-throughput and cost-effective KASP assays were developed, validated and successfully deployed to improve the resistance against foliar fungal diseases and oleic acid in groundnut. So far deployment of allele-specific and KASP diagnostic markers facilitated development and release of two rust- and LLS-resistant varieties and five high-oleic acid groundnut varieties in India. These validated markers provide opportunities for routine deployment in groundnut breeding programs.


Assuntos
Basidiomycota , Micoses , Resistência à Doença/genética , Ácido Oleico , Melhoramento Vegetal , Mapeamento Cromossômico , Basidiomycota/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
9.
PLoS Pathog ; 17(11): e1010100, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34797876

RESUMO

Dengue virus (DENV) disruption of the innate immune response is critical to establish infection. DENV non-structural protein 5 (NS5) plays a central role in this disruption, such as antagonism of STAT2. We recently found that DENV serotype 2 (DENV2) NS5 interacts with Polymerase associated factor 1 complex (PAF1C). The primary members of PAF1C are PAF1, LEO1, CTR9, and CDC73. This nuclear complex is an emerging player in the immune response. It promotes the expression of many genes, including genes related to the antiviral, antimicrobial and inflammatory responses, through close association with the chromatin of these genes. Our previous work demonstrated that NS5 antagonizes PAF1C recruitment to immune response genes. However, it remains unknown if NS5 antagonism of PAF1C is complementary to its antagonism of STAT2. Here, we show that knockout of PAF1 enhances DENV2 infectious virion production. By comparing gene expression profiles in PAF1 and STAT2 knockout cells, we find that PAF1 is necessary to express immune response genes that are STAT2-independent. Finally, we mapped the viral determinants for the NS5-PAF1C protein interaction. We found that NS5 nuclear localization and the C-terminal region of the methyltransferase domain are required for its interaction with PAF1C. Mutation of these regions rescued the expression of PAF1-dependent immune response genes that are antagonized by NS5. In sum, our results support a role for PAF1C in restricting DENV2 replication that NS5 antagonizes through its protein interaction with PAF1C.


Assuntos
Dengue/virologia , Mutação , Domínios e Motivos de Interação entre Proteínas , Fator de Transcrição STAT2/metabolismo , Frações Subcelulares/metabolismo , Fatores de Transcrição/metabolismo , Proteínas não Estruturais Virais/metabolismo , Células A549 , Sistemas CRISPR-Cas , Dengue/genética , Dengue/metabolismo , Vírus da Dengue/fisiologia , Humanos , RNA-Seq , Fator de Transcrição STAT2/antagonistas & inibidores , Fator de Transcrição STAT2/genética , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Proteínas não Estruturais Virais/genética
10.
Haematologica ; 108(7): 1793-1802, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36779592

RESUMO

Cusatuzumab is a high-affinity, anti-CD70 monoclonal antibody under investigation in acute myeloid leukemia (AML). This two-part, open-label, multicenter, phase I/II trial evaluated cusatuzumab plus azacitidine in patients with newly diagnosed AML ineligible for intensive chemotherapy. Patients received a single dose of cusatuzumab at one of four dose levels (1, 3, 10, or 20 mg/kg) 14 days before starting combination therapy. In phase I dose escalation, cusatuzumab was then administered on days 3 and 17, in combination with azacitidine (75 mg/m2) on days 1-7, every 28 days. The primary objective in phase I was to determine the recommended phase II dose (RP2D) of cusatuzumab plus azacitidine. The primary objective in phase II was efficacy at the RP2D (selected as 10 mg/kg). Thirty-eight patients were enrolled: 12 in phase I (three per dose level; four with European LeukemiaNet 2017 adverse risk) and 26 in phase II (21 with adverse risk). An objective response (≥partial remission) was achieved by 19/38 patients (including 8/26 in phase II); 14/38 achieved complete remission. Eleven patients (37.9%) achieved an objective response among the 29 patients in phase I and phase II treated at the RP2D. At a median follow-up of 10.9 months, median duration of first response was 4.5 months and median overall survival was 11.5 months. The most common treatment-emergent adverse events were infections (84.2%) and hematologic toxicities (78.9%). Seven patients (18.4%) reported infusion-related reactions, including two with grade 3 events. Thus, cusatuzumab/azacitidine appears generally well tolerated and shows preliminary efficacy in this setting. Investigation of cusatuzumab combined with current standard-of-care therapy, comprising venetoclax and azacitidine, is ongoing.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Azacitidina/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Antineoplásicos/uso terapêutico , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Anticorpos Monoclonais/uso terapêutico
11.
Mol Cell ; 57(2): 329-340, 2015 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-25616068

RESUMO

Hepatitis C virus (HCV) is a leading cause of liver disease, but insight into virus-host interactions remains limited. We systematically used affinity purification/mass spectrometry to define the host interactions of all ten HCV proteins in hepatoma cells. We combined these studies with RNAi knockdown of corresponding genes using a two-step scoring approach to generate a map of 139 high-confidence HCV-host protein-protein interactions. We found mitochondrial proteins highly involved in HCV infection and characterized an interaction between the viral core protein and host protein within bgcn homolog (WIBG). Expression of core prevents WIBG from binding its regular interaction partners Y14 and Magoh, two known mediators of the nonsense-mediated mRNA decay pathway. We discovered that this surveillance pathway is disrupted in HCV-infected cells, causing potentially harmful transcripts to accumulate. Our study provides a comprehensive view of HCV-host interactions and uncovers mechanisms for how HCV perturbs host functions during infection.


Assuntos
Hepacivirus/fisiologia , Hepatite C/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Hepatite C/virologia , Interações Hospedeiro-Patógeno , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Mapas de Interação de Proteínas , Transporte Proteico , Proteoma/metabolismo , Proteômica , Proteínas de Transporte Vesicular/metabolismo , Proteínas do Core Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo
12.
J Public Health Manag Pract ; 29(2): 196-201, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36240507

RESUMO

The COVID-19 pandemic, a growing aging population, and inconsistent equity in aging have prompted more public health departments and agencies that focus on older adult services to establish partnerships to improve older adult health. To develop a model for strengthening and better aligning public health-aging partnerships, the Association of State and Territorial Health Officials (ASTHO) and Trust for America's Health engaged the Georgia Division of Aging Services (DAS) and Georgia Department of Public Health (DPH) to participate in a pilot project. ASTHO conducted an intensive qualitative analysis of Georgia's State Health Improvement Plan and State Plan on Aging to systematically assess shared priorities and differences. Through facilitated discussions about the results, prioritization, and planning, DAS and DPH developed an action plan with 2 priority areas to collaborate on and further their partnership. This process can be replicated by other jurisdictions seeking to enhance public health-aging collaboration.


Assuntos
COVID-19 , Pandemias , Humanos , Idoso , Projetos Piloto , COVID-19/epidemiologia , COVID-19/prevenção & controle , Georgia , Envelhecimento
13.
Biophys J ; 121(1): 79-90, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34883069

RESUMO

Highly detailed steered molecular dynamics simulations are performed on differently glycosylated receptor binding domains of the severe acute respiratory syndrome coronavirus-2 spike protein. The binding strength and the binding range increase with glycosylation. The interaction energy rises very quickly when pulling the proteins apart and only slowly drops at larger distances. We see a catch-slip-type behavior whereby interactions during pulling break and are taken over by new interactions forming. The dominant interaction mode is hydrogen bonds, but Lennard-Jones and electrostatic interactions are relevant as well.


Assuntos
COVID-19 , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Humanos , Simulação de Dinâmica Molecular , Polissacarídeos , Ligação Proteica
14.
BMC Genomics ; 23(1): 787, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36451099

RESUMO

BACKGROUND: Sitting at the interface of gene expression and host-pathogen interaction, polymerase associated factor 1 complex (PAF1C) is a rising player in the innate immune response. The complex localizes to the nucleus and associates with chromatin to modulate RNA polymerase II (RNAPII) elongation of gene transcripts. Performing this function at both proximal and distal regulatory elements, PAF1C interacts with many host factors across such sites, along with several microbial proteins during infection. Therefore, translating the ubiquity of PAF1C into specific impacts on immune gene expression remains especially relevant. RESULTS: Advancing past work, we treat PAF1 knockout cells with a slate of immune stimuli to identify key trends in PAF1-dependent gene expression with broad analytical depth. From our transcriptomic data, we confirm PAF1 is an activator of traditional immune response pathways as well as other cellular pathways correlated with pathogen defense. With this model, we employ computational approaches to refine how PAF1 may contribute to both gene activation and suppression. Specifically focusing on transcriptional motifs and regulons, we predict gene regulatory elements strongly associated with PAF1, including those implicated in an immune response. Overall, our results suggest PAF1 is involved in innate immunity at several distinct axes of regulation. CONCLUSIONS: By identifying PAF1-dependent gene expression across several pathogenic contexts, we confirm PAF1C to be a key mediator of innate immunity. Combining these transcriptomic profiles with potential regulatory networks corroborates the previously identified functions of PAF1C. With this, we foster new avenues for its study as a regulator of innate immunity, and our results will serve as a basis for targeted study of PAF1C in future validation studies.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Imunidade Inata/genética , Regulon , Cromatina
15.
Mol Biol Rep ; 49(6): 5751-5770, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34807378

RESUMO

Efficient and innovative breeding strategies are immensely required to meet the global food demand, nutritional security and sustainable agriculture. Genome editing tools have emerged as an effective technology for site-directed genome modification causing the change in gene expression and protein function for the improvement of various important traits in particular the CRISPR/Cas (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein). As the technology evolved with time, advances have been observed like prime editing, base editing, PAMless editing, Drosha based editing with multiple targets having the potential to fulfill the regulatory processes around the world. These recent interventions are highly proficient, cost-efficient, user-friendly, and holds promise for a major revolution in basic and applied plant biology research in the ever-evolving climatic conditions. In the review, we have discussed the most recent technologies and advances for CRISPR/Cas editing in plants.


Assuntos
Sistemas CRISPR-Cas , Melhoramento Vegetal , Sistemas CRISPR-Cas/genética , Edição de Genes , Genoma de Planta/genética , Plantas/genética , Tecnologia
16.
Int J Mol Sci ; 23(15)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35897705

RESUMO

Ubiquitin-Specific Protease-13 (USP13) promotes protein de-ubiquitination. USP13 levels are upregulated in post-mortem Parkinson's disease, whereas USP13 knockdown via shRNA reduces alpha-synuclein levels in animal models. We studied the role of USP13 in knockout mice expressing lentiviral human alpha-synuclein and investigated the impact of a small molecule inhibitor of USP13, BK50118-C, on alpha-synuclein pathology and animal behavior. Alpha-synuclein was expressed unilaterally in substantia nigra (SN) of USP13 deficient mice that were treated with a daily intraperitoneal injection of 100 mg/kg BK50118-C or DMSO for four consecutive weeks, and behavioral and functional assays were performed. Wild-type USP13+/+ mice expressing lentiviral human alpha-synuclein showed motor and behavioral defects that were not seen in partially (USP13+/-) or completely (USP13-/-) deficient USP13 mice. BK50118-C displayed a wide and favorable therapeutic dose range in vivo. Treatment with BK50118-C significantly reduced ubiquitinated alpha-synuclein, increased dopamine levels, and improved motor and behavioral symptoms in wild-type (USP13+/+), but not USP13 deficient, mice. These data suggest that USP13 is critical to the neuropathology of alpha-synuclein, whereas a novel small molecule inhibitor of USP13 is a potential therapeutic agent of alpha-synucleinopathies.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Doença de Parkinson/patologia , Substância Negra/metabolismo , Proteases Específicas de Ubiquitina/metabolismo , alfa-Sinucleína/metabolismo
17.
Int J Mol Sci ; 23(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35805919

RESUMO

Pearl millet is an important crop of the arid and semi-arid ecologies to sustain food and fodder production. The greater tolerance to drought stress attracts us to examine its cellular and molecular mechanisms via functional genomics approaches to augment the grain yield. Here, we studied the drought response of 48 inbreds representing four different maturity groups at the flowering stage. A set of 74 drought-responsive genes were separated into five major phylogenic groups belonging to eight functional groups, namely ABA signaling, hormone signaling, ion and osmotic homeostasis, TF-mediated regulation, molecular adaptation, signal transduction, physiological adaptation, detoxification, which were comprehensively studied. Among the conserved motifs of the drought-responsive genes, the protein kinases and MYB domain proteins were the most conserved ones. Comparative in-silico analysis of the drought genes across millet crops showed foxtail millet had most orthologs with pearl millet. Of 698 haplotypes identified across millet crops, MyC2 and Myb4 had maximum haplotypes. The protein-protein interaction network identified ABI2, P5CS, CDPK, DREB, MYB, and CYP707A3 as major hub genes. The expression assay showed the presence of common as well as unique drought-responsive genes across maturity groups. Drought tolerant genotypes in respective maturity groups were identified from the expression pattern of genes. Among several gene families, ABA signaling, TFs, and signaling proteins were the prospective contributors to drought tolerance across maturity groups. The functionally validated genes could be used as promising candidates in backcross breeding, genomic selection, and gene-editing schemes in pearl millet and other millet crops to increase the yield in drought-prone arid and semi-arid ecologies.


Assuntos
Pennisetum , Setaria (Planta) , Secas , Grão Comestível , Regulação da Expressão Gênica de Plantas , Pennisetum/genética , Melhoramento Vegetal , Estudos Prospectivos
18.
BMC Biotechnol ; 21(1): 13, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33541329

RESUMO

BACKGROUND: Chinese hamster ovary (CHO) cells are widely used for industrial production of biopharmaceuticals. Many genetic, chemical, and environmental approaches have been developed to modulate cellular pathways to improve titers. However, these methods are often irreversible or have off-target effects. Development of techniques which are precise, tunable, and reversible will facilitate temporal regulation of target pathways to maximize titers. In this study, we investigate the use of optogenetics in CHO cells. The light-activated CRISPR-dCas9 effector (LACE) system was first transiently transfected to express eGFP in a light-inducible manner. Then, a stable system was tested using lentiviral transduction. RESULTS: Transient transfections resulted in increasing eGFP expression as a function of LED intensity, and activation for 48 h yielded up to 4-fold increased eGFP expression compared to cells kept in the dark. Fluorescence decreased once the LACE system was deactivated, and a protein half-life of 14.9 h was calculated, which is in agreement with values reported in the literature. In cells stably expressing the LACE system, eGFP expression was confirmed, but there was no significant increase in expression following light activation. CONCLUSIONS: Taken together, these results suggest that optogenetics can regulate CHO cell cultures, but development of stable cell lines requires optimized expression levels of the LACE components to maintain high dynamic range.


Assuntos
Expressão Gênica/efeitos da radiação , Luz , Ovário , Animais , Células CHO , Sistemas CRISPR-Cas , Cricetinae , Cricetulus , Feminino , Técnicas Genéticas , Transfecção
19.
Plant Biotechnol J ; 19(10): 1901-1920, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34182608

RESUMO

Infectious diseases, also known as transmissible or communicable diseases, are caused by pathogens or parasites that spread in communities by direct contact with infected individuals or contaminated materials, through droplets and aerosols, or via vectors such as insects. Such diseases cause ˜17% of all human deaths and their management and control places an immense burden on healthcare systems worldwide. Traditional approaches for the prevention and control of infectious diseases include vaccination programmes, hygiene measures and drugs that suppress the pathogen, treat the disease symptoms or attenuate aggressive reactions of the host immune system. The provision of vaccines and biologic drugs such as antibodies is hampered by the high cost and limited scalability of traditional manufacturing platforms based on microbial and animal cells, particularly in developing countries where infectious diseases are prevalent and poorly controlled. Molecular farming, which uses plants for protein expression, is a promising strategy to address the drawbacks of current manufacturing platforms. In this review article, we consider the potential of molecular farming to address healthcare demands for the most prevalent and important epidemic and pandemic diseases, focussing on recent outbreaks of high-mortality coronavirus infections and diseases that disproportionately affect the developing world.


Assuntos
COVID-19 , Doenças Transmissíveis , Doenças Transmissíveis/epidemiologia , Humanos , Pandemias/prevenção & controle , SARS-CoV-2
20.
Plant Biotechnol J ; 19(10): 1921-1936, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34181810

RESUMO

The fight against infectious diseases often focuses on epidemics and pandemics, which demand urgent resources and command attention from the health authorities and media. However, the vast majority of deaths caused by infectious diseases occur in endemic zones, particularly in developing countries, placing a disproportionate burden on underfunded health systems and often requiring international interventions. The provision of vaccines and other biologics is hampered not only by the high cost and limited scalability of traditional manufacturing platforms based on microbial and animal cells, but also by challenges caused by distribution and storage, particularly in regions without a complete cold chain. In this review article, we consider the potential of molecular farming to address the challenges of endemic and re-emerging diseases, focusing on edible plants for the development of oral drugs. Key recent developments in this field include successful clinical trials based on orally delivered dried leaves of Artemisia annua against malarial parasite strains resistant to artemisinin combination therapy, the ability to produce clinical-grade protein drugs in leaves to treat infectious diseases and the long-term storage of protein drugs in dried leaves at ambient temperatures. Recent FDA approval of the first orally delivered protein drug encapsulated in plant cells to treat peanut allergy has opened the door for the development of affordable oral drugs that can be manufactured and distributed in remote areas without cold storage infrastructure and that eliminate the need for expensive purification steps and sterile delivery by injection.


Assuntos
Artemisia annua , Doenças Transmissíveis , Preparações Farmacêuticas , Animais , Humanos , Agricultura Molecular , Plantas Comestíveis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA