Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hum Genet ; 108(1): 115-133, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33308444

RESUMO

Signal peptide-CUB-EGF domain-containing protein 3 (SCUBE3) is a member of a small family of multifunctional cell surface-anchored glycoproteins functioning as co-receptors for a variety of growth factors. Here we report that bi-allelic inactivating variants in SCUBE3 have pleiotropic consequences on development and cause a previously unrecognized syndromic disorder. Eighteen affected individuals from nine unrelated families showed a consistent phenotype characterized by reduced growth, skeletal features, distinctive craniofacial appearance, and dental anomalies. In vitro functional validation studies demonstrated a variable impact of disease-causing variants on transcript processing, protein secretion and function, and their dysregulating effect on bone morphogenetic protein (BMP) signaling. We show that SCUBE3 acts as a BMP2/BMP4 co-receptor, recruits the BMP receptor complexes into raft microdomains, and positively modulates signaling possibly by augmenting the specific interactions between BMPs and BMP type I receptors. Scube3-/- mice showed craniofacial and dental defects, reduced body size, and defective endochondral bone growth due to impaired BMP-mediated chondrogenesis and osteogenesis, recapitulating the human disorder. Our findings identify a human disease caused by defective function of a member of the SCUBE family, and link SCUBE3 to processes controlling growth, morphogenesis, and bone and teeth development through modulation of BMP signaling.


Assuntos
Osso e Ossos/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Deficiências do Desenvolvimento/metabolismo , Osteogênese/fisiologia , Transdução de Sinais/fisiologia , Animais , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 4/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Células HEK293 , Células Hep G2 , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Células MCF-7 , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL
2.
J Med Genet ; 59(4): 358-365, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33820834

RESUMO

BACKGROUND: Holoprosencephaly is a spectrum of developmental disorder of the embryonic forebrain in which there is failed or incomplete separation of the prosencephalon into two cerebral hemispheres. To date, dominant mutations in sonic hedgehog (SHH) pathway genes are the predominant Mendelian causes, and have marked interfamilial and intrafamilial phenotypical variabilities. METHODS: We describe two families in which offspring had holoprosencephaly spectrum and homozygous predicted-deleterious variants in phospholipase C eta-1 (PLCH1). Immunocytochemistry was used to examine the expression pattern of PLCH1 in human embryos. We used SHH as a marker of developmental stage and of early embryonic anatomy. RESULTS: In the first family, two siblings had congenital hydrocephalus, significant developmental delay and a monoventricle or fused thalami with a homozygous PLCH1 c.2065C>T, p.(Arg689*) variant. In the second family, two siblings had alobar holoprosencephaly and cyclopia with a homozygous PLCH1 c.4235delA, p.(Cys1079ValfsTer16) variant. All parents were healthy carriers, with no holoprosencephaly spectrum features. We found that the subcellular localisation of PLCH1 is cytoplasmic, but the p.(Cys1079ValfsTer16) variant was predominantly nuclear. Human embryo immunohistochemistry showed PLCH1 to be expressed in the notorcord, developing spinal cord (in a ventral to dorsal gradient), dorsal root ganglia, cerebellum and dermatomyosome, all tissues producing or responding to SHH. Furthermore, the embryonic subcellular localisation of PLCH1 was exclusively cytoplasmic, supporting protein mislocalisation contributing to the pathogenicity of the p.(Cys1079ValfsTer16) variant. CONCLUSION: Our data support the contention that PLCH1 has a role in prenatal mammalian neurodevelopment, and deleterious variants cause a clinically variable holoprosencephaly spectrum phenotype.


Assuntos
Holoprosencefalia , Fosfolipases Tipo C , Animais , Proteínas Hedgehog/genética , Holoprosencefalia/genética , Holoprosencefalia/metabolismo , Humanos , Mamíferos/metabolismo , Mutação , Fenótipo , Fosfolipases Tipo C/genética
3.
Am J Hum Genet ; 104(4): 731-737, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30905400

RESUMO

Ciliopathies are clinical disorders of the primary cilium with widely recognized phenotypic and genetic heterogeneity. In two Arab consanguineous families, we mapped a ciliopathy phenotype that most closely matches Joubert syndrome (hypotonia, developmental delay, typical facies, oculomotor apraxia, polydactyly, and subtle posterior fossa abnormalities) to a single locus in which a founder homozygous truncating variant in FAM149B1 was identified by exome sequencing. We subsequently identified a third Arab consanguineous multiplex family in which the phenotype of Joubert syndrome/oral-facial-digital syndrome (OFD VI) was found to co-segregate with the same founder variant in FAM149B1. Independently, autozygosity mapping and exome sequencing in a consanguineous Turkish family with Joubert syndrome highlighted a different homozygous truncating variant in the same gene. FAM149B1 encodes a protein of unknown function. Mutant fibroblasts were found to have normal ciliogenesis potential. However, distinct cilia-related abnormalities were observed in these cells: abnormal accumulation IFT complex at the distal tips of the cilia, which assumed bulbous appearance, increased length of the primary cilium, and dysregulated SHH signaling. We conclude that FAM149B1 is required for normal ciliary biology and that its deficiency results in a range of ciliopathy phenotypes in humans along the spectrum of Joubert syndrome.


Assuntos
Anormalidades Múltiplas/genética , Cerebelo/anormalidades , Cílios/patologia , Ciliopatias/diagnóstico , Ciliopatias/genética , Proteínas do Citoesqueleto/genética , Anormalidades do Olho/genética , Doenças Renais Císticas/genética , Mutação , Retina/anormalidades , Adolescente , Alelos , Pré-Escolar , Cílios/genética , Consanguinidade , Exoma , Genes Recessivos , Homozigoto , Humanos , Masculino , Malformações do Sistema Nervoso/genética , Síndromes Orofaciodigitais/genética , Fenótipo , Análise de Sequência de DNA , Transdução de Sinais , Turquia
4.
Am J Hum Genet ; 103(4): 612-620, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30269812

RESUMO

Joubert syndrome (JBTS) is a genetically heterogeneous autosomal-recessive neurodevelopmental ciliopathy. We investigated further the underlying genetic etiology of Joubert syndrome by studying two unrelated families in whom JBTS was not associated with pathogenic variants in known JBTS-associated genes. Combined autozygosity mapping of both families highlighted a candidate locus on chromosome 10 (chr10: 101569997-109106128, UCSC Genome Browser hg 19), and exome sequencing revealed two missense variants in ARL3 within the candidate locus. The encoded protein, ADP ribosylation factor-like GTPase 3 (ARL3), is a small GTP-binding protein that is involved in directing lipid-modified proteins into the cilium in a GTP-dependent manner. Both missense variants replace the highly conserved Arg149 residue, which we show to be necessary for the interaction with its guanine nucleotide exchange factor ARL13B, such that the mutant protein is associated with reduced INPP5E and NPHP3 localization in cilia. We propose that ARL3 provides a potential hub in the network of proteins implicated in ciliopathies, whereby perturbation of ARL3 leads to the mislocalization of multiple ciliary proteins as a result of abnormal displacement of lipidated protein cargo.


Assuntos
Fatores de Ribosilação do ADP/genética , Anormalidades Múltiplas/genética , Cerebelo/anormalidades , Cílios/genética , Anormalidades do Olho/genética , Doenças Renais Císticas/genética , Mutação de Sentido Incorreto/genética , Retina/anormalidades , Adulto , Criança , Pré-Escolar , Cromossomos Humanos Par 10/genética , Exoma/genética , Feminino , Proteínas de Ligação ao GTP/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Masculino , Transporte Proteico/genética , Adulto Jovem
5.
Cancer Immunol Immunother ; 70(9): 2625-2638, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33582867

RESUMO

There is an increased risk of colorectal cancer (CRC) development in patients with non-insulin-dependent type 2 diabetes. CD8+ T cells have been implicated in diabetes and are crucial for anti-tumor immunity. However, transcriptomic profiling for CD8+ T cells from CRC diabetic patients has not been explored. We performed RNA sequencing and compared transcriptomic profiles of CD8+ tumor-infiltrating T lymphocytes (CD8+ TILs) in CRC diabetic patients with CRC nondiabetic patients. We found that genes associated with ribogenesis, epigenetic regulations, oxidative phosphorylation and cell cycle arrest were upregulated in CD8+ TILs from diabetic patients, while genes associated with PI3K signaling pathway, cytokine response and response to lipids were downregulated. Among the significantly deregulated 1009 genes, 342 (186 upregulated and 156 downregulated) genes were selected based on their link to diabetes, and their associations with the presence of specific CRC pathological parameters were assessed using GDC TCGA colon database. The 186 upregulated genes were associated with the presence of colon polyps history (P = 0.0007) and lymphatic invasion (P = 0.0025). Moreover, CRC patients with high expression of the 186 genes were more likely to have poorer disease-specific survival (DSS) (Mantel-Cox log-rank P = 0.024) than those with low score. Our data provide novel insights into molecular pathways and biological functions, which could be altered in CD8+ TILs from CRC diabetic versus nondiabetic patients, and reveal candidate genes linked to diabetes, which could predict DSS and pathological parameters associated with CRC progression. However, further investigations using larger patient cohorts and functional studies are required to validate these findings.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Neoplasias Colorretais/etiologia , Diabetes Mellitus Tipo 2/complicações , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Transcriptoma , Biomarcadores , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Biologia Computacional , Diabetes Mellitus Tipo 2/diagnóstico , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Imunofenotipagem , Prognóstico , Mapeamento de Interação de Proteínas
6.
Hepatology ; 71(6): 2067-2079, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31595528

RESUMO

BACKGROUND AND AIMS: The clinical consequences of defective primary cilium (ciliopathies) are characterized by marked phenotypic and genetic heterogeneity. Although fibrocystic liver disease is an established ciliopathy phenotype, severe neonatal cholestasis is rarely recognized as such. APPROACH AND RESULTS: We describe seven individuals from seven families with syndromic ciliopathy clinical features, including severe neonatal cholestasis (lethal in one and necessitating liver transplant in two). Positional mapping revealed a single critical locus on chromosome 7. Whole-exome sequencing revealed three different homozygous variants in Tetratricopeptide Repeat Domain 26 (TTC26) that fully segregated with the phenotype. TTC26 (intraflagellar transport [IFT] 56/DYF13) is an atypical component of IFT-B complex, and deficiency of its highly conserved orthologs has been consistently shown to cause defective ciliary function in several model organisms. We show that cilia in TTC26-mutated patient cells display variable length and impaired function, as indicated by dysregulated sonic hedgehog signaling, abnormal staining for IFT-B components, and transcriptomic clustering with cells derived from individuals with closely related ciliopathies. We also demonstrate a strong expression of Ttc26 in the embryonic mouse liver in a pattern consistent with its proposed role in the normal development of the intrahepatic biliary system. CONCLUSIONS: In addition to establishing a TTC26-related ciliopathy phenotype in humans, our results highlight the importance of considering ciliopathies in the differential diagnosis of severe neonatal cholestasis even in the absence of more typical features.


Assuntos
Colestase Intra-Hepática/genética , Doenças do Recém-Nascido/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Repetições de Tetratricopeptídeos/genética , Animais , Ciliopatias , Diagnóstico Diferencial , Proteínas Hedgehog , Humanos , Recém-Nascido , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Mutação , Transporte Proteico/genética , Índice de Gravidade de Doença , Sequenciamento do Exoma/métodos
7.
Brain ; 143(10): 2911-2928, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33103737

RESUMO

Human post-natal neurodevelopmental delay is often associated with cerebral alterations that can lead, by themselves or associated with peripheral deficits, to premature death. Here, we report the clinical features of 10 patients from six independent families with mutations in the autosomal YIF1B gene encoding a ubiquitous protein involved in anterograde traffic from the endoplasmic reticulum to the cell membrane, and in Golgi apparatus morphology. The patients displayed global developmental delay, motor delay, visual deficits with brain MRI evidence of ventricle enlargement, myelination alterations and cerebellar atrophy. A similar profile was observed in the Yif1b knockout (KO) mouse model developed to identify the cellular alterations involved in the clinical defects. In the CNS, mice lacking Yif1b displayed neuronal reduction, altered myelination of the motor cortex, cerebellar atrophy, enlargement of the ventricles, and subcellular alterations of endoplasmic reticulum and Golgi apparatus compartments. Remarkably, although YIF1B was not detected in primary cilia, biallelic YIF1B mutations caused primary cilia abnormalities in skin fibroblasts from both patients and Yif1b-KO mice, and in ciliary architectural components in the Yif1b-KO brain. Consequently, our findings identify YIF1B as an essential gene in early post-natal development in human, and provide a new genetic target that should be tested in patients developing a neurodevelopmental delay during the first year of life. Thus, our work is the first description of a functional deficit linking Golgipathies and ciliopathies, diseases so far associated exclusively to mutations in genes coding for proteins expressed within the primary cilium or related ultrastructures. We therefore propose that these pathologies should be considered as belonging to a larger class of neurodevelopmental diseases depending on proteins involved in the trafficking of proteins towards specific cell membrane compartments.


Assuntos
Cílios/genética , Complexo de Golgi/genética , Mutação/genética , Transtornos do Neurodesenvolvimento/genética , Proteínas de Transporte Vesicular/genética , Animais , Células Cultivadas , Cílios/patologia , Feminino , Complexo de Golgi/patologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Transtornos do Neurodesenvolvimento/diagnóstico por imagem
8.
Am J Hum Genet ; 101(2): 206-217, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28735859

RESUMO

Interpretation of variants of uncertain significance, especially chromosomal rearrangements in non-coding regions of the human genome, remains one of the biggest challenges in modern molecular diagnosis. To improve our understanding and interpretation of such variants, we used high-resolution three-dimensional chromosomal structural data and transcriptional regulatory information to predict position effects and their association with pathogenic phenotypes in 17 subjects with apparently balanced chromosomal abnormalities. We found that the rearrangements predict disruption of long-range chromatin interactions between several enhancers and genes whose annotated clinical features are strongly associated with the subjects' phenotypes. We confirm gene-expression changes for a couple of candidate genes to exemplify the utility of our analysis of position effect. These results highlight the important interplay between chromosomal structure and disease and demonstrate the need to utilize chromatin conformational data for the prediction of position effects in the clinical interpretation of non-coding chromosomal rearrangements.


Assuntos
Efeitos da Posição Cromossômica/genética , Mapeamento Cromossômico , Cromossomos Humanos/genética , Rearranjo Gênico/genética , Predisposição Genética para Doença/genética , Genoma Humano/genética , Pontos de Quebra do Cromossomo , Regulação da Expressão Gênica/genética , Variação Genética/genética , Humanos , Hibridização in Situ Fluorescente , Cariótipo , Fenótipo , Translocação Genética/genética
9.
Am J Hum Genet ; 101(1): 23-36, 2017 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-28625504

RESUMO

Joubert syndrome (JS) is a recessive neurodevelopmental disorder characterized by hypotonia, ataxia, abnormal eye movements, and variable cognitive impairment. It is defined by a distinctive brain malformation known as the "molar tooth sign" on axial MRI. Subsets of affected individuals have malformations such as coloboma, polydactyly, and encephalocele, as well as progressive retinal dystrophy, fibrocystic kidney disease, and liver fibrosis. More than 35 genes have been associated with JS, but in a subset of families the genetic cause remains unknown. All of the gene products localize in and around the primary cilium, making JS a canonical ciliopathy. Ciliopathies are unified by their overlapping clinical features and underlying mechanisms involving ciliary dysfunction. In this work, we identify biallelic rare, predicted-deleterious ARMC9 variants (stop-gain, missense, splice-site, and single-exon deletion) in 11 individuals with JS from 8 families, accounting for approximately 1% of the disorder. The associated phenotypes range from isolated neurological involvement to JS with retinal dystrophy, additional brain abnormalities (e.g., heterotopia, Dandy-Walker malformation), pituitary insufficiency, and/or synpolydactyly. We show that ARMC9 localizes to the basal body of the cilium and is upregulated during ciliogenesis. Typical ciliopathy phenotypes (curved body shape, retinal dystrophy, coloboma, and decreased cilia) in a CRISPR/Cas9-engineered zebrafish mutant model provide additional support for ARMC9 as a ciliopathy-associated gene. Identifying ARMC9 mutations as a cause of JS takes us one step closer to a full genetic understanding of this important disorder and enables future functional work to define the central biological mechanisms underlying JS and other ciliopathies.


Assuntos
Anormalidades Múltiplas/genética , Proteínas do Domínio Armadillo/genética , Corpos Basais/metabolismo , Cerebelo/anormalidades , Ciliopatias/genética , Anormalidades do Olho/genética , Doenças Renais Císticas/genética , Mutação/genética , Retina/anormalidades , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Anormalidades Múltiplas/patologia , Animais , Proteínas do Domínio Armadillo/metabolismo , Sequência de Bases , Encéfalo/patologia , Cerebelo/patologia , Cílios/metabolismo , Ciliopatias/patologia , Diagnóstico por Imagem , Exoma/genética , Anormalidades do Olho/patologia , Predisposição Genética para Doença , Humanos , Doenças Renais Císticas/patologia , Fenótipo , Retina/patologia , Análise de Sequência de DNA , Regulação para Cima/genética , Proteínas de Peixe-Zebra/metabolismo
10.
Am J Hum Genet ; 100(5): 706-724, 2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28413018

RESUMO

During neurotransmission, synaptic vesicles undergo multiple rounds of exo-endocytosis, involving recycling and/or degradation of synaptic proteins. While ubiquitin signaling at synapses is essential for neural function, it has been assumed that synaptic proteostasis requires the ubiquitin-proteasome system (UPS). We demonstrate here that turnover of synaptic membrane proteins via the endolysosomal pathway is essential for synaptic function. In both human and mouse, hypomorphic mutations in the ubiquitin adaptor protein PLAA cause an infantile-lethal neurodysfunction syndrome with seizures. Resulting from perturbed endolysosomal degradation, Plaa mutant neurons accumulate K63-polyubiquitylated proteins and synaptic membrane proteins, disrupting synaptic vesicle recycling and neurotransmission. Through characterization of this neurological intracellular trafficking disorder, we establish the importance of ubiquitin-mediated endolysosomal trafficking at the synapse.


Assuntos
Epilepsia/genética , Proteínas/genética , Espasmos Infantis/genética , Transmissão Sináptica , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Modelos Animais de Doenças , Epilepsia/diagnóstico , Fibroblastos/metabolismo , Técnicas de Genotipagem , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética , Camundongos , Camundongos Transgênicos , Mutação , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Conformação Proteica , Proteínas/metabolismo , Células de Purkinje/metabolismo , Espasmos Infantis/diagnóstico , Vesículas Sinápticas/metabolismo , Transcriptoma , Ubiquitina/genética , Ubiquitina/metabolismo
11.
Genet Med ; 22(6): 1051-1060, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32055034

RESUMO

PURPOSE: Ciliopathies are highly heterogeneous clinical disorders of the primary cilium. We aim to characterize a large cohort of ciliopathies phenotypically and molecularly. METHODS: Detailed phenotypic and genomic analysis of patients with ciliopathies, and functional characterization of novel candidate genes. RESULTS: In this study, we describe 125 families with ciliopathies and show that deleterious variants in previously reported genes, including cryptic splicing variants, account for 87% of cases. Additionally, we further support a number of previously reported candidate genes (BBIP1, MAPKBP1, PDE6D, and WDPCP), and propose nine novel candidate genes (CCDC67, CCDC96, CCDC172, CEP295, FAM166B, LRRC34, TMEM17, TTC6, and TTC23), three of which (LRRC34, TTC6, and TTC23) are supported by functional assays that we performed on available patient-derived fibroblasts. From a phenotypic perspective, we expand the phenomenon of allelism that characterizes ciliopathies by describing novel associations including WDR19-related Stargardt disease and SCLT1- and CEP164-related Bardet-Biedl syndrome. CONCLUSION: In this cohort of phenotypically and molecularly characterized ciliopathies, we draw important lessons that inform the clinical management and the diagnostics of this class of disorders as well as their basic biology.


Assuntos
Síndrome de Bardet-Biedl , Ciliopatias , Alelos , Síndrome de Bardet-Biedl/genética , Cílios/genética , Ciliopatias/genética , Humanos , Canais de Sódio
12.
Hum Mutat ; 40(11): 2108-2120, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31301155

RESUMO

The wobble position in the anticodon loop of transfer ribonucleic acid (tRNA) is subject to numerous posttranscriptional modifications. In particular, thiolation of the wobble uridine has been shown to play an important role in codon-anticodon interactions. This modification is catalyzed by a highly conserved CTU1/CTU2 complex, disruption of which has been shown to cause abnormal phenotypes in yeast, worms, and plants. We have previously suggested that a single founder splicing variant in human CTU2 causes a novel multiple congenital anomalies syndrome consisting of dysmorphic facies, renal agenesis, ambiguous genitalia, microcephaly, polydactyly, and lissencephaly (DREAM-PL). In this study, we describe five new patients with DREAM-PL phenotype and whose molecular analysis expands the allelic heterogeneity of the syndrome to five different alleles; four of which predict protein truncation. Functional characterization using patient-derived cells for each of these alleles, as well as the original founder allele; revealed a specific impairment of wobble uridine thiolation in all known thiol-containing tRNAs. Our data establish a recognizable CTU2-linked autosomal recessive syndrome in humans characterized by defective thiolation of the wobble uridine. The potential deleterious consequences for the translational efficiency and fidelity during development as a mechanism for pathogenicity represent an attractive target of future investigations.


Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Alelos , Predisposição Genética para Doença , Variação Genética , RNA de Transferência/genética , RNA de Transferência/metabolismo , tRNA Metiltransferases/genética , Sequência de Aminoácidos , Consanguinidade , Análise Mutacional de DNA , Fácies , Feminino , Estudos de Associação Genética , Genótipo , Humanos , Imageamento por Ressonância Magnética , Masculino , Fenótipo , RNA de Transferência/química , Radiografia , Análise de Sequência de DNA , Índice de Gravidade de Doença , Síndrome
13.
Hum Genet ; 138(3): 231-239, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30778726

RESUMO

Pseudouridylation is the most common post-transcriptional modification, wherein uridine is isomerized into 5-ribosyluracil (pseudouridine, Ψ). The resulting increase in base stacking and creation of additional hydrogen bonds are thought to enhance RNA stability. Pseudouridine synthases are encoded in humans by 13 genes, two of which are linked to Mendelian diseases: PUS1 and PUS3. Very recently, PUS7 mutations were reported to cause intellectual disability with growth retardation. We describe two families in which two different homozygous PUS7 mutations (missense and frameshift deletion) segregate with a phenotype comprising intellectual disability and progressive microcephaly. Short stature and hearing loss were variable in these patients. Functional characterization of the two mutations confirmed that both result in decreased levels of Ψ13 in tRNAs. Furthermore, the missense variant of the S. cerevisiae ortholog failed to complement the growth defect of S. cerevisiae pus7Δ trm8Δ mutants. Our results confirm that PUS7 is a bona fide Mendelian disease gene and expand the list of human diseases caused by impaired pseudouridylation.


Assuntos
Estudos de Associação Genética , Predisposição Genética para Doença , Deficiência Intelectual/genética , Microcefalia/genética , Mutação , Pseudouridina/genética , Adolescente , Sequência de Aminoácidos , Criança , Mapeamento Cromossômico , Consanguinidade , Feminino , Genes Recessivos , Humanos , Masculino , Microcefalia/diagnóstico , Linhagem , Fenótipo , RNA de Transferência/genética , Sequenciamento do Exoma
14.
Am J Hum Genet ; 98(4): 643-52, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27018474

RESUMO

Nonsense-mediated decay (NMD) is an important process that is best known for degrading transcripts that contain premature stop codons (PTCs) to mitigate their potentially harmful consequences, although its regulatory role encompasses other classes of transcripts as well. Despite the critical role of NMD at the cellular level, our knowledge about the consequences of deficiency of its components at the organismal level is largely limited to model organisms. In this study, we report two consanguineous families in which a similar pattern of congenital anomalies was found to be most likely caused by homozygous loss-of-function mutations in SMG9, encoding an essential component of the SURF complex that generates phospho-UPF1, the single most important step in NMD. By knocking out Smg9 in mice via CRISPR/Cas9, we were able to recapitulate the major features of the SMG9-related multiple congenital anomaly syndrome we observed in humans. Surprisingly, human cells devoid of SMG9 do not appear to have reduction of PTC-containing transcripts but do display global transcriptional dysregulation. We conclude that SMG9 is required for normal human and murine development, most likely through a transcriptional regulatory role, the precise nature of which remains to be determined.


Assuntos
Anormalidades Múltiplas/genética , Mutação , Degradação do RNAm Mediada por Códon sem Sentido/genética , Fosfoproteínas/genética , Adulto , Alelos , Sequência de Aminoácidos , Animais , Estudos de Casos e Controles , Criança , Pré-Escolar , Códon sem Sentido , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Camundongos , Dados de Sequência Molecular , Linhagem , Fosforilação , Polimorfismo de Nucleotídeo Único , RNA Mensageiro , Arábia Saudita
15.
Genet Med ; 21(3): 736-742, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30237576

RESUMO

PURPOSE: Establishing links between Mendelian phenotypes and genes enables the proper interpretation of variants therein. Autozygome, a rich source of homozygous variants, has been successfully utilized for the high throughput identification of novel autosomal recessive disease genes. Here, we highlight the utility of the autozygome for the high throughput confirmation of previously published tentative links to diseases. METHODS: Autozygome and exome analysis of patients with suspected Mendelian phenotypes. All variants were classified according to the American College of Medical Genetics and Genomics guidelines. RESULTS: We highlight 30 published candidate genes (ACTL6B, ADAM22, AGTPBP1, APC, C12orf4, C3orf17 (NEPRO), CENPF, CNPY3, COL27A1, DMBX1, FUT8, GOLGA2, KIAA0556, LENG8, MCIDAS, MTMR9, MYH11, QRSL1, RUBCN, SLC25A42, SLC9A1, TBXT, TFG, THUMPD1, TRAF3IP2, UFC1, UFM1, WDR81, XRCC2, ZAK) in which we identified homozygous likely deleterious variants in patients with compatible phenotypes. We also identified homozygous likely deleterious variants in 18 published candidate genes (ABCA2, ARL6IP1, ATP8A2, CDK9, CNKSR1, DGAT1, DMXL2, GEMIN4, HCN2, HCRT, MYO9A, PARS2, PLOD3, PREPL, SCLT1, STX3, TXNRD2, WIPI2) although the associated phenotypes are sufficiently different from the original reports that they represent phenotypic expansion or potentially distinct allelic disorders. CONCLUSIONS: Our results should facilitate the timely relabeling of these candidate disease genes in relevant databases to improve the yield of clinical genomic sequencing.


Assuntos
Doença/genética , Genômica/métodos , Análise de Sequência de DNA/métodos , Variação Biológica da População/genética , Criança , Pré-Escolar , Diagnóstico , Técnicas e Procedimentos Diagnósticos , Feminino , Testes Genéticos/normas , Variação Genética , Genótipo , Hereditariedade/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Homozigoto , Humanos , Lactente , Recém-Nascido , Masculino , Mutação , Fenótipo
16.
Genet Med ; 21(3): 545-552, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30214071

RESUMO

PURPOSE: Congenital microcephaly (CM) is an important birth defect with long term neurological sequelae. We aimed to perform detailed phenotypic and genomic analysis of patients with Mendelian forms of CM. METHODS: Clinical phenotyping, targeted or exome sequencing, and autozygome analysis. RESULTS: We describe 150 patients (104 families) with 56 Mendelian forms of CM. Our data show little overlap with the genetic causes of postnatal microcephaly. We also show that a broad definition of primary microcephaly -as an autosomal recessive form of nonsyndromic CM with severe postnatal deceleration of occipitofrontal circumference-is highly sensitive but has a limited specificity. In addition, we expand the overlap between primary microcephaly and microcephalic primordial dwarfism both clinically (short stature in >52% of patients with primary microcephaly) and molecularly (e.g., we report the first instance of CEP135-related microcephalic primordial dwarfism). We expand the allelic and locus heterogeneity of CM by reporting 37 novel likely disease-causing variants in 27 disease genes, confirming the candidacy of ANKLE2, YARS, FRMD4A, and THG1L, and proposing the candidacy of BPTF, MAP1B, CCNH, and PPFIBP1. CONCLUSION: Our study refines the phenotype of CM, expands its genetics heterogeneity, and informs the workup of children born with this developmental brain defect.


Assuntos
Microcefalia/genética , Microcefalia/fisiopatologia , Adulto , Criança , Pré-Escolar , Nanismo/genética , Feminino , Genômica/métodos , Genótipo , Humanos , Lactente , Recém-Nascido , Masculino , Mutação/genética , Linhagem , Fenótipo , Sequenciamento do Exoma/métodos
17.
Clin Genet ; 95(2): 310-319, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30561787

RESUMO

Defects in the peroxisomes biogenesis and/or function result in peroxisomal disorders. In this study, we describe the largest Arab cohort to date (72 families) of clinically, biochemically and molecularly characterized patients with peroxisomal disorders. At the molecular level, we identified 43 disease-causing variants, half of which are novel. The founder nature of many of the variants allowed us to calculate the minimum disease burden for these disorders in our population ~1:30 000, which is much higher than previous estimates in other populations. Clinically, we found an interesting trend toward genotype/phenotype correlation in terms of long-term survival. Nearly half (40/75) of our peroxisomal disorders patients had documented survival beyond 1 year of age. Most unusual among the long-term survivors was a multiplex family in which the affected members presented as adults with non-specific intellectual disability and epilepsy. Other unusual presentations included the very recently described peroxisomal fatty acyl-CoA reductase 1 disorder as well as CRD, spastic paraparesis, white matter (CRSPW) syndrome. We conclude that peroxisomal disorders are highly heterogeneous in their clinical presentation. Our data also confirm the demonstration that milder forms of Zellweger spectrum disorders cannot be ruled out by the "gold standard" very long chain fatty acids assay, which highlights the value of a genomics-first approach in these cases.


Assuntos
Árabes , Transtornos Peroxissômicos/epidemiologia , Transtornos Peroxissômicos/etiologia , Árabes/genética , Biomarcadores , Encéfalo/anormalidades , Encéfalo/diagnóstico por imagem , Estudos de Coortes , Consanguinidade , Efeitos Psicossociais da Doença , Gerenciamento Clínico , Suscetibilidade a Doenças , Fácies , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Imageamento por Ressonância Magnética , Masculino , Mutação , Linhagem , Transtornos Peroxissômicos/diagnóstico , Transtornos Peroxissômicos/terapia , Fenótipo , Vigilância da População , Prognóstico
18.
Am J Med Genet A ; 179(6): 1053-1057, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30912300

RESUMO

We report two siblings with microcephaly, early infantile onset seizures, and cerebellar vermis hypoplasia, in whom whole exome sequencing revealed a novel homozygous missense (c.770T>C, p.[Leu257Pro]) variant in the hedgehog acyl-transferase gene (HHAT), encoding an enzyme required for the attachment of palmitoyl residues that are critical for multimerization and long and short range hedgehog signaling. There is a report of one family with Nivelon-Nivelon-Mabille syndrome in which HHAT was proposed as the likely candidate gene. The phenotypic overlap with the family we report herein provides further evidence implicating HHAT in cerebellar development and the pathogenesis of this rare spectrum.


Assuntos
Aciltransferases/genética , Alelos , Vermis Cerebelar/anormalidades , Microcefalia/diagnóstico , Microcefalia/genética , Mutação de Sentido Incorreto , Fenótipo , Criança , Pré-Escolar , Análise Mutacional de DNA , Fácies , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética
20.
Genet Med ; 20(1): 64-68, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28640246

RESUMO

PurposeGenome-wide association studies (GWAS) have been instrumental to our understanding of the genetic risk determinants of complex traits. A common challenge in GWAS is the interpretation of signals, which are usually attributed to the genes closest to the polymorphic markers that display the strongest statistical association. Naturally occurring complete loss of function (knockout) of these genes in humans can inform GWAS interpretation by unmasking their deficiency state in a clinical context.MethodsWe exploited the unique population structure of Saudi Arabia to identify novel knockout events in genes previously highlighted in GWAS using combined autozygome/exome analysis.ResultsWe report five families with homozygous truncating mutations in genes that had only been linked to human disease through GWAS. The phenotypes observed in the natural knockouts for these genes (TRAF3IP2, FRMD3, RSRC1, BTBD9, and PXDNL) range from consistent with, to unrelated to, the previously reported GWAS phenotype.ConclusionWe expand the role of human knockouts in the medical annotation of the human genome, and show their potential value in informing the interpretation of GWAS of complex traits.


Assuntos
Genoma Humano , Estudo de Associação Genômica Ampla , Genômica , Mutação com Perda de Função , Alelos , Fácies , Estudos de Associação Genética , Predisposição Genética para Doença , Genética Populacional , Estudo de Associação Genômica Ampla/métodos , Estudo de Associação Genômica Ampla/normas , Genômica/métodos , Genômica/normas , Genótipo , Humanos , Fenótipo , Arábia Saudita
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA