RESUMO
Individual variation in the addiction liability of amphetamines has a heritable genetic component. We previously identified Hnrnph1 (heterogeneous nuclear ribonucleoprotein H1) as a quantitative trait gene underlying decreased methamphetamine-induced locomotor activity in mice. Here, we showed that mice (both females and males) with a heterozygous mutation in the first coding exon of Hnrnph1 (H1+/-) showed reduced methamphetamine reinforcement and intake and dose-dependent changes in methamphetamine reward as measured via conditioned place preference. Furthermore, H1+/- mice showed a robust decrease in methamphetamine-induced dopamine release in the NAc with no change in baseline extracellular dopamine, striatal whole-tissue dopamine, dopamine transporter protein, dopamine uptake, or striatal methamphetamine and amphetamine metabolite levels. Immunohistochemical and immunoblot staining of midbrain dopaminergic neurons and their forebrain projections for TH did not reveal any major changes in staining intensity, cell number, or forebrain puncta counts. Surprisingly, there was a twofold increase in hnRNP H protein in the striatal synaptosome of H1+/- mice with no change in whole-tissue levels. To gain insight into the mechanisms linking increased synaptic hnRNP H with decreased methamphetamine-induced dopamine release and behaviors, synaptosomal proteomic analysis identified an increased baseline abundance of several mitochondrial complex I and V proteins that rapidly decreased at 30 min after methamphetamine administration in H1+/- mice. In contrast, the much lower level of basal synaptosomal mitochondrial proteins in WT mice showed a rapid increase. We conclude that H1+/- decreases methamphetamine-induced dopamine release, reward, and reinforcement and induces dynamic changes in basal and methamphetamine-induced synaptic mitochondrial function.SIGNIFICANCE STATEMENT Methamphetamine dependence is a significant public health concern with no FDA-approved treatment. We discovered a role for the RNA binding protein hnRNP H in methamphetamine reward and reinforcement. Hnrnph1 mutation also blunted methamphetamine-induced dopamine release in the NAc, a key neurochemical event contributing to methamphetamine addiction liability. Finally, Hnrnph1 mutants showed a marked increase in basal level of synaptosomal hnRNP H and mitochondrial proteins that decreased in response to methamphetamine, whereas WT mice showed a methamphetamine-induced increase in synaptosomal mitochondrial proteins. Thus, we identified a potential role for hnRNP H in basal and dynamic mitochondrial function that informs methamphetamine-induced cellular adaptations associated with reduced addiction liability.
Assuntos
Dopamina/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo F-H/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/genética , Metanfetamina/farmacologia , Mitocôndrias/efeitos dos fármacos , Reforço Psicológico , Recompensa , Sinaptossomos/metabolismo , Animais , Ansiedade/fisiopatologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Éxons/genética , Comportamento Exploratório/efeitos dos fármacos , Feminino , Heterozigoto , Masculino , Mesencéfalo/efeitos dos fármacos , Mesencéfalo/metabolismo , Metanfetamina/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Mutação , Reflexo de Sobressalto/efeitos dos fármacos , Teste de Desempenho do Rota-Rod , Transtornos Relacionados ao Uso de Substâncias/fisiopatologiaRESUMO
Phosphatidylinositide 3-kinases (PI3Ks) are intracellular signal transducer enzymes that recruit protein kinase B (aka Akt) to the cell membrane, the subsequent activation of which regulates many cellular functions. PI3K/Akt activity is up-regulated within mesocorticolimbic structures in animal models of alcoholism, but less is known regarding PI3K/Akt activity in animal models of cocaine addiction. Given that prefrontal cortex (PFC) is grossly dysregulated in addiction, we studied how cocaine affects protein indices of PFC PI3K/Akt activity in rat and mouse models and examined the relevance of PI3K activity for cocaine-related learning. Immunoblotting of mouse medial PFC at 3 weeks withdrawal from a cocaine-sensitization regimen (seven injections of 30 mg/kg, intraperitoneal [IP]) revealed increased kinase activity, as did immunoblotting of tissue from the ventral PFC of rats with a history of long-access intravenous cocaine self-administration (0.25 mg/0.1 mL infusion; 10 days of 6 h/d cocaine access). Interestingly, increased Akt phosphorylation was observed in rat ventromedial PFC at both 3- and 30-day withdrawal only in animals re-exposed to cocaine-associated cues. A conditioned place-preference paradigm in mice and a cue-elicited drug-seeking test in rats were conducted to determine the functional relevance for elevated PI3K activity for addiction-related behavior. In both cases, an intra-PFC infusion of the PI3K inhibitor wortmannin (50µM) reduced drug-seeking behavior. Taken together, this cross-species, interdisciplinary, study provides convincing evidence that cocaine history produces an enduring increase in PI3K/Akt-dependent signaling within the more ventral aspect of the PFC that is relevant to behavioral reactivity to drug-associated cues/contexts. As such, PI3K inhibitors may well serve as an effective strategy for reducing drug cue reactivity and craving in cocaine addiction.
Assuntos
Transtornos Relacionados ao Uso de Cocaína , Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Comportamento de Procura de Droga/efeitos dos fármacos , Aprendizagem/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Animais , Comportamento Animal , Fissura , Sinais (Psicologia) , Modelos Animais de Doenças , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Fosforilação , Córtex Pré-Frontal/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Autoadministração , Wortmanina/farmacologiaRESUMO
Problems associated with the abuse of amphetamine-type stimulants, including methamphetamine (MA), pose serious health and socioeconomic issues world-wide. While it is well-established that MA's psychopharmacological effects involve interactions with monoamine neurotransmission, accumulating evidence from animal models implicates dysregulated glutamate in MA addiction vulnerability and use disorder. Recently, we discovered an association between genetic vulnerability to MA-taking and increased expression of the glutamate receptor scaffolding protein Homer2 within both the shell and core subregions of the nucleus accumbens (NAC) and demonstrated a necessary role for Homer2 within the shell subregion in MA reward and reinforcement in mice. This report extends our earlier work by interrogating the functional relevance of Homer2 within the NAC core for the conditioned rewarding and reinforcing properties of MA. C57BL/6J mice with a virus-mediated knockdown of Homer2b expression within the NAC core were first tested for the development and expression of a MA-induced conditioned place-preference/CPP (four pairings of 2 mg/kg MA) and then were trained to self-administer oral MA under operant-conditioning procedures (5-80 mg/L). Homer2b knockdown in the NAC core augmented a MA-CPP and shifted the dose-response function for MA-reinforced responding, above control levels. To determine whether Homer2b within NAC subregions played an active role in regulating MA reward and reinforcement, we characterized the MA phenotype of constitutive Homer2 knockout (KO) mice and then assayed the effects of virus-mediated overexpression of Homer2b within the NAC shell and core of wild-type and KO mice. In line with the results of NAC core knockdown, Homer2 deletion potentiated MA-induced CPP, MA-reinforced responding and intake, as well as both cue- and MA-primed reinstatement of MA-seeking following extinction. However, there was no effect of Homer2b overexpression within the NAC core or the shell on the KO phenotype. These data provide new evidence indicating a globally suppressive role for Homer2 in MA-seeking and MA-taking but argue against specific NAC subregions as the neural loci through which Homer2 actively regulates MA addiction-related behaviors.
RESUMO
Craving elicited by drug-associated cues intensifies across protracted drug abstinence - a phenomenon termed "incubation of craving" - and drug-craving in human addicts correlates with frontal cortical hyperactivity. Herein, we employed a rat model of cue-elicited cocaine-craving to test the hypothesis that the time-dependent incubation of cue-elicited cocaine-craving is associated with adaptations in dopamine and glutamate neurotransmission within the ventromedial prefrontal cortex (vmPFC). Rats were trained to self-administer intravenous cocaine (6 h/day × 10 days) and underwent in vivo microdialysis procedures during 2 h-tests for cue-elicited cocaine-craving at either 3 or 30 days withdrawal. Controls rats were trained to either self-administer sucrose pellets or received no primary reinforcer. Cocaine-seeking rats exhibited a withdrawal-dependent increase and decrease, respectively, in cue-elicited glutamate and dopamine release. These patterns of neurochemical change were not observed in either control condition. Thus, cue-hypersensitivity of vmPFC glutamate terminals is a biochemical correlate of incubated cocaine-craving that may stem from dopamine dysregulation in this region.