RESUMO
The experience of the self as an embodied agent in the world is an essential aspect of human consciousness. This experience arises from the feeling of control over one's bodily actions, termed the Sense of Agency, and the feeling that the body belongs to the self, Body Ownership. Despite longstanding philosophical and scientific interest in the relationship between the body and brain, the neural systems involved in Body Ownership and Sense of Agency, and especially their interactions, are not yet understood. In this preregistered study using the Moving Rubber Hand Illusion inside an MR-scanner, we aimed to uncover the relationship between Body Ownership and Sense of Agency in the human brain. Importantly, by using both visuomotor and visuotactile stimulations and measuring online trial-by-trial fluctuations in the illusion magnitude, we were able to disentangle brain systems related to objective sensory stimulation and subjective judgments of the bodily-self. Our results indicate that at both the behavioral and neural levels, Body Ownership and Sense of Agency are strongly interrelated. Multisensory regions in the occipital and fronto-parietal regions encoded convergence of sensory stimulation conditions. The subjective judgments of the bodily-self were related to BOLD fluctuations in the Somatosensory cortex and in regions not activated by the sensory conditions, such as the insular cortex and precuneus. Our results highlight the convergence of multisensory processing in specific neural systems for both Body Ownership and Sense of Agency with partially dissociable regions for subjective judgments in regions of the Default Mode Network.
Assuntos
Ilusões , Percepção do Tato , Humanos , Percepção Visual/fisiologia , Ilusões/fisiologia , Propriedade , Lobo Parietal/fisiologia , Encéfalo , Imagem Corporal , Mãos/fisiologia , Percepção do Tato/fisiologiaRESUMO
Spin currents of perpendicularly polarized spins (z spins) have received blooming interest for the potential in energy-efficient spin-orbit torque switching of perpendicular magnetization in the absence of a magnetic field. However, generation of z spins is limited mainly to magnetically or crystallographically low-symmetry single crystals that are hardly compatible with the integration to semiconductor circuits. This work reports efficient generation of z spins in sputter-deposited polycrystalline heavy metal devices via a new mechanism of broken electric symmetries in both the transverse and perpendicular directions. Both the damping-like and field-like spin-orbit torques of z spins can be tuned significantly by varying the degree of the electric asymmetries via the length, width, and thickness of devices as well as by varying the type of the heavy metals. The presence of z spins also enables deterministic, nearly-full, external-magnetic-field-free switching of a uniform perpendicularly magnetized FeCoB layer, the core structure of magnetic tunnel junctions, with high coercivity at a low current density. These results establish the first universal, energy-efficient, integration-friendly approach to generate z-spin current by electric asymmetry design for dense and low-power spin-torque memory and computing technologies and will stimulate investigation of z-spin currents in various polycrystalline materials.
RESUMO
Attachment theory is built on the assumption of consistency; the mother-infant bond is thought to underpin the life-long representations individuals construct of attachment relationships. Still, consistency in the individual's neural response to attachment-related stimuli representing his or her entire relational history has not been investigated. Mothers and children were followed across two decades and videotaped in infancy (3-6 months), childhood (9-12 years) and young adulthood (18-24 years). In adulthood, participants underwent functional magnetic resonance imaging while exposed to videos of own mother-child interactions (Self) vs unfamiliar interactions (Other). Self-stimuli elicited greater activations across preregistered nodes of the human attachment network, including thalamus-to-brainstem, amygdala, hippocampus, anterior cingulate cortex (ACC), insula and temporal cortex. Critically, self-stimuli were age-invariant in most regions of interest despite large variability in social behavior, and Bayesian analysis showed strong evidence for lack of age-related differences. Psycho-physiological interaction analysis indicated that self-stimuli elicited tighter connectivity between ACC and anterior insula, consolidating an interface associating information from exteroceptive and interceptive sources to sustain attachment representations. Child social engagement behavior was individually stable from infancy to adulthood and linked with greater ACC and insula response to self-stimuli. Findings demonstrate overlap in circuits sustaining parental and child attachment and accord with perspectives on the continuity of attachment across human development.