Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Arch Pharm (Weinheim) ; : e202400001, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747690

RESUMO

Various wound dressings have been developed so far for wound healing, but most of them are ineffective in properly reestablishing the skin's structure, which increases infection risks and dehydration. Electrospun membranes are particularly interesting for wound dressing applications because they mimic the extracellular matrix of healthy skin. In this study, a potential wound healing platform capable of inducing synergistic antibacterial and antioxidation activities was developed by incorporating bio-active rosmarinic acid-hydroxyapatite hybrid (HAP-RA) with different contents (0.5, 1, and 1.5 wt.%) into the electrospun polyamide 6 (PA6) nanofibers. Then, polyethylene glycol (PEG) was introduced to the nanofibrous composite to improve the biocompatibility and biodegradability of the dressing. The results indicated that the hydrophilicity, water uptake, biodegradability, and mechanical properties of the obtained PA6/PEG/HAP-RA nanofibrous composite enhanced at 1 wt.% of HAP-RA. The nanofibrous composite had excellent antibacterial activity. The antioxidation potential of the samples was assessed in vitro. The MTT assay performed on the L929 cell line confirmed the positive effects of the nanofibrous scaffold on cell viability and proliferation. According to the results, the PA6/PEG/HAP-RA nanofibrous composite showed the desirable physiochemical and biological properties besides antibacterial and antioxidative capabilities, making it a promising candidate for further studies in wound healing applications.

2.
Molecules ; 27(9)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35566229

RESUMO

In this study, the curing kinetics of epoxy nanocomposites containing ultra-fine full-vulcanized acrylonitrile butadiene rubber nanoparticles (UFNBRP) at different concentrations of 0, 0.5, 1 and 1.5 wt.% was investigated. In addition, the effect of curing temperatures was studied based on the rheological method under isothermal conditions. The epoxy resin/UFNBRP nanocomposites were characterized via Fourier transform infrared spectroscopy (FTIR). FTIR analysis exhibited the successful preparation of epoxy resin/UFNBRP, due to the existence of the UFNBRP characteristic peaks in the final product spectrum. The morphological structure of the epoxy resin/UFNBRP nanocomposites was investigated by both field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) studies. The FESEM and TEM studies showed UFNBRP had a spherical structure and was well dispersed in epoxy resin. The chemorheological analysis showed that due to the interactions between UFNBRP and epoxy resin, by increasing UFNBRP concentration at a constant temperature (65, 70 and 75 °C), the curing rate decreases at the gel point. Furthermore, both the curing kinetics modeling and chemorheological analysis demonstrated that the incorporation of 0.5% UFNBRP in epoxy resin matrix reduces the activation energy. The curing kinetic of epoxy resin/UFNBRP nanocomposite was best fitted with the Sestak-Berggren autocatalytic model.


Assuntos
Nanocompostos , Nanopartículas , Elastômeros , Resinas Epóxi/química , Cinética , Nanocompostos/química
3.
Molecules ; 26(3)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33530593

RESUMO

Kinetic modeling and degradation study of liquid polysulfide (LPS)/clay nanocomposite is possible through Ozawa-Flynn-Wall (OFW) and Kissinger methods. Comparing the results of these models with experimental data leads to provide an accurate degradation kinetic evaluation of these materials. To this aim, the morphology and distribution of clay nanoparticles (CNPs) within the LPS matrix were investigated using Field Emission Scanning Electron Microscopy (FESEM) and X-ray diffraction (XRD). To evaluate the interaction between the LPS and the CNPs, the Fourier transform infrared (FTIR) identification was utilized. Furthermore, to investigate the kinetics of degradation, the thermal gravimetric analysis (TGA) and derivative thermogravimetry (DTG) of the samples were used in the nitrogen atmosphere with the help of Kissinger and Ozawa-Flynn-Wall (OFW) models. The characterization results confirmed the homogenous dispersion of the CNPs into the LPS matrix. In addition, the presence of CNPs increased the thermal stability and activation energy (Ea) of the samples at different conversion rates. Moreover, the OFW method was highly consistent with the experimental data and provided an appropriate fit for the degradation kinetics.


Assuntos
Argila/química , Nanocompostos/química , Sulfetos/química , Cinética , Microscopia Eletrônica de Varredura , Termodinâmica , Termogravimetria , Difração de Raios X
4.
Molecules ; 26(6)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805845

RESUMO

The incorporation of nanofillers such as graphene into polymers has shown significant improvements in mechanical characteristics, thermal stability, and conductivity of resulting polymeric nanocomposites. To this aim, the influence of incorporation of graphene nanosheets into ultra-high molecular weight polyethylene (UHMWPE) on the thermal behavior and degradation kinetics of UHMWPE/graphene nanocomposites was investigated. Scanning electron microscopy (SEM) analysis revealed that graphene nanosheets were uniformly spread throughout the UHMWPE's molecular chains. X-Ray Diffraction (XRD) data posited that the morphology of dispersed graphene sheets in UHMWPE was exfoliated. Non-isothermal differential scanning calorimetry (DSC) studies identified a more pronounced increase in melting temperatures and latent heat of fusions in nanocomposites compared to UHMWPE at lower concentrations of graphene. Thermogravimetric analysis (TGA) and derivative thermogravimetric (DTG) revealed that UHMWPE's thermal stability has been improved via incorporating graphene nanosheets. Further, degradation kinetics of neat polymer and nanocomposites have been modeled using equations such as Friedman, Ozawa-Flynn-Wall (OFW), Kissinger, and Augis and Bennett's. The "Model-Fitting Method" showed that the auto-catalytic nth-order mechanism provided a highly consistent and appropriate fit to describe the degradation mechanism of UHMWPE and its graphene nanocomposites. In addition, the calculated activation energy (Ea) of thermal degradation was enhanced by an increase in graphene concentration up to 2.1 wt.%, followed by a decrease in higher graphene content.

5.
J Biomed Mater Res B Appl Biomater ; 112(1): e35370, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38247254

RESUMO

Hyaluronic acid (HA) and chitosan (CS), as natural biomaterials, display excellent biocompatibility and stimulate the growth and proliferation of fibroblasts. Furthermore, nylon 6 (N6) is a low-cost polymer with good compatibility with human tissues and high mechanical stability. In this study, HA and CS were applied to modify N6 nanofibrous mat (N6/HA/CS) for potential wound dressing. N6/HA/CS nanofibrous composite mats were developed using a simple one-step electrospinning technique at different CS concentrations of 1, 2, and 3 wt%. The results demonstrated that incorporating HA and CS into N6 resulted in increased hydrophilicity, as well as favorable physical and mechanical properties. In addition, the minimum inhibitory concentration and (MIC) optical density techniques were used to determine the antibacterial properties of N6/HA/CS nanofibrous composite mats, and the results demonstrated that the composites could markedly inhibit the growth of Gram-positive bacteria Staphylococcus aureus and Gram-negative bacteria Escherichia coli. Because of its superior mechanical properties, substantial antimicrobial effects, and hydrophilic surface, N6/HA/CS at 2 wt% of CS (N6/HA/CS2) was chosen as the most suitable nanofibrous mat. The swelling, porosity, gel content, and in vitro degradation studies imply that N6/HA/CS2 nanofibrous composite mat has proper moisture retention and biodegradability. Furthermore, the N6/HA/CS2 nanofibrous composite mat was discovered to be nontoxic to L929 fibroblast cells and to even improve cell proliferation. Based on the findings, this research offers a simple and rapid method for creating material that could be utilized as prospective wound dressings in clinical environments.


Assuntos
Caprolactama/análogos & derivados , Quitosana , Nanofibras , Humanos , Quitosana/farmacologia , Ácido Hialurônico/farmacologia , Estudos Prospectivos , Bandagens , Antibacterianos/farmacologia , Escherichia coli , Polímeros
6.
Environ Sci Pollut Res Int ; 30(36): 85968-85985, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37395880

RESUMO

Chromium (Cr), as a highly toxic heavy metal ion, is still a severe environmental issue, although many research efforts have been put into its removal from water. Polyaniline (PANI), as a conductive polymer, demonstrated great capability in heavy metal adsorption due to its low cost, ease of synthesis, reversible redox behavior, and chemical stability. However, using PANI powder alone in heavy metal removal causes secondary pollution and aggregation in water. The PANI coating on a substrate could tackle this problem. In this study, polyaniline-coated polyamide6 (PA6/PANI) nano-web membrane was used for the removal of Cr(VI) in both adsorption and filtration-adsorption modes. The PA6/PANI nano-web membrane was fabricated via PA6 electrospinning followed by in-situ polymerization of the aniline monomer. The electrospinning condition of PA6 was optimized by the Taguchi method. The PA6/PANI nano-web membrane was characterized by FESEM, N2-adsorption/desorption, FT-IR, contact angle measurement, and tensile test. FT-IR and FESEM results demonstrated the successful synthesis of PA6/PANI nano-web and PANI homogeneous coating on PA6 nanofibers, respectively. The N2 adsorption/desorption results indicated that the pore volume of the PA6/PANI nano-web decreased by 39% compared to PA6 nanofibers. The tensile test and water contact angle studies showed that the coating of PANI on PA6 nanofibers improves the mechanical properties and hydrophilicity of PA6 by 10% and 25%, respectively. The application of PA6/PANI nano-web in the removal of Cr(VI) in batch and filtration modes exhibits excellent removal of 98.4 and 86.7%, respectively. A pseudo first order model well described the adsorption kinetics, and the adsorption isotherm was best fitted by the Langmuir model. A black box modeling approach based on artificial neural networks (ANN) was developed to predict the removal efficiency of the membrane. The superior performance of PA6/PANI in both adsorption and filtration-adsorption systems makes it a potential candidate for the removal of heavy metals from water on an industrial scale.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Adsorção , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise , Cromo/química , Compostos de Anilina/química , Cinética
7.
Int J Pharm ; 642: 123207, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37419431

RESUMO

Endowing wound dressings with drug delivery capability is a suitable strategy to transfer medicinal compounds locally to damaged skin layers. These dressings are especially useful for accelerating the healing rate in the cases of long-term treatment, and adding more functionalities to the platform. In this study, a wound dressing composed of polyamide 6, hyaluronic acid, and curcumin-loaded halloysite nanotubes (PA6/HA/HNT@Cur) was designed and fabricated for wound healing applications. The physicochemical properties of this platform were investigated through Fourier-transform infrared spectroscopy and field-emission scanning electron microscopy. Moreover, wettability, tensile strength, swelling, and in vitro degradation were assessed. The HNT@Cur was incorporated in the fibers in three concentrations and 1 wt% was found as the optimum concentration yielding desirable structural and mechanical properties. The loading efficiency of Cur on HNT was calculated to be 43 ± 1.8%, and the release profiles and kinetics of nanocomposite were investigated at physiological and acidic pH. In vitro antibacterial and antioxidation studies showed that the PA6/HA/HNT@Cur mat had strong antibacterial and antioxidation activities against gram-positive and -negative pathogens and reactive oxygen species, respectively. Desirable cell compatibility of the mat was found through MTT assay against L292 cells up to 72 h. Finally, the efficacy of the designed wound dressing was evaluated in vivo; after 14 days, the results indicated that the wound size treated with the nanocomposite mat significantly decreased compared to the control sample. This study proposed a swift and straightforward method for developing materials that might be utilized as wound dressings in clinical settings.


Assuntos
Curcumina , Nanofibras , Nanotubos , Curcumina/farmacologia , Curcumina/química , Argila/química , Antioxidantes/farmacologia , Nanofibras/química , Antibacterianos/farmacologia , Antibacterianos/química , Nanotubos/química , Cicatrização
8.
Curr Pharm Des ; 28(5): 340-351, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34269663

RESUMO

Wound healing is a varied and complex process designed to restore normal skin structure, function, and appearance in a timely manner. To achieve this goal, different immune and biological systems participate in coordination through four separate steps, including homeostasis, inflammation, proliferation, and regeneration. Each step involves the function of different cells, cytokines, and growth factors. However, chronic ulcers, which are classified into three types of ulcers, namely vascular ulcers, diabetic ulcers, and pressure ulcers, are not able to heal through the mentioned natural stages. This, in turn, causes mental and physical problems for these people and, as a result, imposes high economic and social costs on the society. In this regard, using a system that can accelerate the healing process of such chronic wounds, as an urgent need in society, should be considered. Therefore, in this study, the innovations of drug delivery systems for the healing of chronic wounds using hydrogels, nanomaterials, and membranes are discussed and reviewed.


Assuntos
Complicações do Diabetes , Úlcera por Pressão , Humanos , Hidrogéis , Pele , Cicatrização/fisiologia
9.
Mater Sci Eng C Mater Biol Appl ; 128: 112273, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34474832

RESUMO

To develop novel imprinted poly (methacrylic acid) nanoparticles for the controlled release of Rivastigmine Tartrate (RVS), the amalgamation of molecular imprinting techniques and polymerization of precipitates were applied in this work. By permuting different concentrations of pentaerythritol triacrylate (PETA) or trimethylolpropane triacrylate (TMPTA) as cross-linkers, ten different samples were synthesized, and their abilities assessed for RVS absorption. Among them, uniform mono-disperse nanoparticles were synthesized in an RVS/PMAA/PETA mole ratio of 1:6:12, named molecularly imprinted polymers 2 (MIP2), which showed the highest RVS absorption. Analytical procedures involving the Fourier transform infrared (FT-IR), Thermogeometric analysis (TGA), Field emission scanning electron microscopy (FE-SEM), Dynamic light scattering (DLS), and absorption/desorption porosimetry (BET) measurements were applied to characterize the morphology and physicochemical properties of the MIP2. In addition, the cytotoxicity of the MIP2 sample was measured by MTT assay on an L929 cell line. Studies pertaining to the in-vitro release of RVS from MIP2 samples showed that the prepared sample had a controlled and sustained release compared, which differed from the results obtained from the non-imprinted polymer (NIP) with the same formulization. Results obtained further reinforced the feasibility of prepared MIPs as a prime candidature for RVS drug delivery to alleviate Alzheimer's and other diseases.


Assuntos
Impressão Molecular , Polímeros Molecularmente Impressos , Adsorção , Preparações de Ação Retardada , Rivastigmina , Espectroscopia de Infravermelho com Transformada de Fourier , Tartaratos
10.
Polymers (Basel) ; 13(7)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806074

RESUMO

As a hydrophilic renewable polymer, starch has been widely used in biocompatible plastics as a filler for more than two decades. The present study aimed at investigating the effects of polyethylene glycol (PEG), as a plasticizer, on the physicochemical properties of a hybrid composite-polylactic acid (PLA) and thermoplastic starch (TPS). A solvent evaporation process was adopted to gelatinize the starch and disparate PEG contents ranging from 3 to 15 wt.% (with respect to the sample weight) were examined. It was revealed that the increase in the PEG content was accompanied by an increment in the starch gelatinization degree. Referring to the microstructural analyses, the TPS/PLA mixture yielded a ductile hybrid composite with a fine morphology and a uniform phase. Nevertheless, two different solvents, including acetone and ethanol, were used to assess if they had any effect on the hybrid's morphology, tensile strength and thermal properties. It was found that ethanol culminated in a porous hybrid composite with a finer morphology and better starch distribution in the PLA structure than acetone. As the result of PEG addition to the composite, the crystallinity and tensile strength were decreased, whereas the elongation increased. The hydrolytic degradation of samples was assessed under different pH and thermal conditions. Moreover, the microbial degradation of the PLA/TPS hybrid composite containing different PEG molar fractions was investigated in the soil for 45 days. The rate of degradation in both hydrolytic and biodegradation increased in the samples with a higher amount of PEG with ethanol solvent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA