Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
2.
J Vis Exp ; (203)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38251797

RESUMO

Hyperpolarized (HP) xenon magnetic resonance imaging (129Xe MRI) is a recently federal drug administration (FDA)-approved imaging modality that produces high-resolution images of an inhaled breath of xenon gas for investigation of lung function. However, implementing 129Xe MRI is uniquely challenging as it requires specialized hardware and equipment for hyperpolarization, procurement of xenon imaging coils and coil software, development and compilation of multinuclear MR imaging sequences, and reconstruction/analysis of acquired data. Without proper expertise, these tasks can be daunting, and failure to acquire high-quality images can be frustrating, and expensive. Here, we present some quality control (QC) protocols, troubleshooting practices, and helpful tools for129Xe MRI sites, which may aid in the acquisition of optimized, high-quality data and accurate results. The discussion will begin with an overview of the process for implementing HP 129Xe MRI, including requirements for a hyperpolarizer lab, the combination of 129Xe MRI coil hardware/software, data acquisition and sequence considerations, data structures, k-space and image properties, and measured signal and noise characteristics. Within each of these necessary steps lies opportunities for errors, challenges, and unfavorable occurrences leading to poor image quality or failed imaging, and this presentation aims to address some of the more commonly encountered issues. In particular, identification and characterization of anomalous noise patterns in acquired data are necessary to avoid image artifacts and low-quality images; examples will be given, and mitigation strategies will be discussed. We aim to make the 129Xe MRI implementation process easier for new sites while providing some guidelines and strategies for real-time troubleshooting.


Assuntos
Líquidos Corporais , Imageamento por Ressonância Magnética , Confiabilidade dos Dados , Controle de Qualidade , Xenônio
3.
Acad Radiol ; 29 Suppl 2: S82-S90, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33487537

RESUMO

PURPOSE: In this study, we compared hyperpolarized 3He and 129Xe images from patients with cystic fibrosis using two commonly applied magnetic resonance sequences, standard gradient echo (GRE) and balanced steady-state free precession (TrueFISP) to quantify regional similarities and differences in signal distribution and defect analysis. MATERIALS AND METHODS: Ten patients (7M/3F) with cystic fibrosis underwent hyperpolarized gas MR imaging with both 3He and 129Xe. Six had MRI with both GRE, and TrueFISP sequences and four patients had only GRE sequence but not TrueFISP. Ventilation defect percentages (VDPs) were calculated as lung voxels with <60% of the whole-lung hyperpolarized gas signal mean and was measured in all datasets. The voxel signal distributions of both 129Xe and 3He gases were visualized and compared using violin plots. VDPs of hyperpolarized 3 He and 129 Xe were compared in Bland-Altman plots; Pearson correlation coefficients were used to evaluate the relationships between inter-gas and inter-scan to assess the reproducibility. RESULTS: A significant correlation was demonstrated between 129Xe VDP and 3He VDP for both GRE and TrueFISP sequences (ρ = 0.78, p<0.0004). The correlation between the GRE and TrueFISP VDP for 3He was ρ = 0.98 and was ρ = 0.91 for 129Xe. Overall, 129Xe (27.2±9.4) VDP was higher than 3He (24.3±6.9) VDP on average on cystic fibrosis patients. CONCLUSION: In patients with cystic fibrosis, the selection of hyperpolarized 129Xe or 3He gas is most likely inconsequential when it comes to measure the overall lung function by VDP although 129Xe may be more sensitive to starker lung defects, particularly when using a TrueFISP sequence.


Assuntos
Fibrose Cística , Fibrose Cística/diagnóstico por imagem , Hélio , Humanos , Pulmão/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Masculino , Reprodutibilidade dos Testes , Isótopos de Xenônio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA