Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(4): e2200057120, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36649432

RESUMO

Antibody delivery to the CNS remains a huge hurdle for the clinical application of antibodies targeting a CNS antigen. The blood-brain barrier and blood-CSF barrier restrict access of therapeutic antibodies to their CNS targets in a major way. The very high amounts of therapeutic antibodies that are administered systemically in recent clinical trials to reach CNS targets are barely viable cost-wise for broad, routine applications. Though global CNS delivery of antibodies can be achieved by intrathecal application, these procedures are invasive. A non-invasive method to bring antibodies into the CNS reliably and reproducibly remains an important unmet need in neurology. In the present study, we show that intranasal application of a mouse monoclonal antibody against the neurite growth-inhibiting and plasticity-restricting membrane protein Nogo-A leads to a rapid transfer of significant amounts of antibody to the brain and spinal cord in intact adult rats. Daily intranasal application for 2 wk of anti-Nogo-A antibody enhanced growth and compensatory sprouting of corticofugal projections and functional recovery in rats after large unilateral cortical strokes. These findings are a starting point for clinical translation for a less invasive route of application of therapeutic antibodies to CNS targets for many neurological indications.


Assuntos
Anticorpos Monoclonais , Proteínas da Mielina , Animais , Ratos , Encéfalo/metabolismo , Proteínas da Mielina/metabolismo , Proteínas Nogo , Medula Espinal/metabolismo , Anticorpos Monoclonais/administração & dosagem , Administração Intranasal
2.
J Immunol ; 210(7): 1004-1010, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36752720

RESUMO

Recombinant Abs are gaining increasing importance for the treatment of certain cancers or immunological or neurologic disorders. The ELISA is one of the most used analytical tools for detecting and quantifying Abs of interest. However, the performance of ELISAs often varies because of nonstandard experimental procedures as well as inadequate data analysis. In our study, we standardized a procedure and statistical analysis for a highly sensitive ELISA of a mouse Ab in mouse (C57BL/6J) CNS tissue. The following steps are of crucial importance: 1) calculation of the limit of detection based on control tissue lysate samples in the same testing buffer as the testing samples; 2) calculation of the limit of quantification as measured with acceptable accuracy and precision; and 3) a five-parameter logistic regression model to interpolate the symmetric and asymmetric standard curves. We also show that three amplification Abs can significantly increase the sensitivity of the ELISA compared with a two amplification Ab setup. This standardized procedure may be a valuable tool to increase the sensitivity, reproducibility, and precision of ELISA studies in basic science and translational research.


Assuntos
Anticorpos , Sistema Nervoso Central , Animais , Camundongos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Camundongos Endogâmicos C57BL , Ensaio de Imunoadsorção Enzimática/métodos
3.
BMC Biol ; 21(1): 177, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37592249

RESUMO

BACKGROUND: The Rotarod test with commercial apparatus is widely used to assess locomotor performance, balance and motor learning as well as the deficits resulting from diverse neurological disorders in laboratory rodents due to its simplicity and objectivity. Traditionally, the test ends when rodents drop from the accelerating, turning rod, and the only parameter used commonly is "latency to fall". The values of individual animals can often vary greatly. RESULTS: In the present study, we established a procedure for mice with 4 consecutive days of training with 4 trials per day and modified the testing procedure by placing the mice back on the rod repeatedly after each fall until the trial ends (5 min). Data from the fourth training day as baseline results showed that the second, third and fourth trial were more consistent than the first, probably due to habituation or learning. There was no difference between the second, third and fourth trial, two trials may be sufficient in testing. We also introduced 3 additional read-outs: Longest duration on the rod (s), Maximal distance covered (cm), and Number of falls to better evaluate the motor capacity over the 5 min of testing. We then used this 4-parameter analysis to capture the motor deficits of mice with mild to moderate traumatic brain injuries (by a weight dropping on the skull (Marmarou model)). We found that normalization of data to individual baseline performance was needed to reduce individual differences, and 4 trials were more sensitive than two to show motor deficits. The parameter of Maximal distance was the best in detecting statistically significant long-term motor deficits. CONCLUSIONS: These results show that by making adjustments to the protocol and employing a more refined analysis, it is possible to expand a widely used routine behavioral test with additional accessible parameters that detect relevant deficits in a model of mild to moderate traumatic brain injury. The modified Rotarod test maybe a valuable tool for better preclinical evaluations of drugs and therapies.


Assuntos
Cabeça , Aprendizagem , Animais , Camundongos , Teste de Desempenho do Rota-Rod , Crânio
4.
J Neuroinflammation ; 17(1): 164, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32450881

RESUMO

BACKGROUND: Farnesoid X receptor (FXR) is a nuclear receptor that plays a critical role in controlling cell apoptosis in diverse diseases. Previous studies have shown that knocking out FXR improved cardiac function by reducing cardiomyocyte apoptosis in myocardial ischemic mice. However, the role of FXR after cerebral ischemia remains unknown. In this study, we explored the effects and mechanisms of FXR knockout (KO) on the functional recovery of mice post cerebral ischemia-reperfusion. METHODS: Adult male C57BL/6 wild type and FXR KO mice were subjected to 90-min transient middle cerebral artery occlusion (tMCAO). The mice were divided into five groups: sham, wild-type tMCAO, FXR KO tMCAO, wild-type tMCAO treated with calcium agonist Bayk8644, and FXR KO tMCAO treated with Bayk8644. FXR expression was examined using immunohistochemistry and Western blot. Brain infarct and brain atrophy volume were examined at 3 and 14 days after stroke respectively. Neurobehavioral tests were conducted up to 14 days after stroke. The protein levels of apoptotic factors (Bcl-2, Bax, and Cleaved caspase-3) and mRNA levels of pro-inflammatory factors (TNF-α, IL-6, IL-1ß, IL-17, and IL-18) were examined using Western blot and RT-PCR. TUNEL staining and calcium imaging were obtained using confocal and two-photon microscopy. RESULTS: The expression of FXR was upregulated after ischemic stroke, which is located in the nucleus of the neurons. FXR KO was found to reduce infarct volume and promote neurobehavioral recovery following tMCAO compared to the vehicle. The expression of apoptotic and pro-inflammatory factors decreased in FXR KO mice compared to the control. The number of NeuN+/TUNEL+ cells declined in the peri-infarct area of FXR KO mice compared to the vehicle. We further demonstrated that inhibition of FXR reduced calcium overload and addition of ionomycin could reverse this neuroprotective effect in vitro. What is more, in vivo results showed that enhancement of intracellular calcium concentrations could aggravate ischemic injury and reverse the neuroprotective effect of FXR KO in mice. CONCLUSIONS: FXR KO can promote neurobehavioral recovery and attenuate ischemic brain injury, inflammatory release, and neuronal apoptosis via reducing calcium influx, suggesting its role as a therapeutic target for stroke treatments.


Assuntos
Apoptose/fisiologia , Isquemia Encefálica/patologia , Encéfalo/patologia , Neurônios/patologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia
5.
J Biol Chem ; 292(4): 1267-1287, 2017 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-27856635

RESUMO

Obesity paradox (OP) describes a widely observed clinical finding of improved cardiovascular fitness and survival in some overweight or obese patients. The molecular mechanisms underlying OP remain enigmatic partly due to a lack of animal models mirroring OP in patients. Using apolipoprotein E knock-out (apoE-/-) mice on a high fat (HF) diet as an atherosclerotic obesity model, we demonstrated 1) microRNA-155 (miRNA-155, miR-155) is significantly up-regulated in the aortas of apoE-/- mice, and miR-155 deficiency in apoE-/- mice inhibits atherosclerosis; 2) apoE-/-/miR-155-/- (double knock-out (DKO)) mice show HF diet-induced obesity, adipocyte hypertrophy, and present with non-alcoholic fatty liver disease; 3) DKO mice demonstrate HF diet-induced elevations of plasma leptin, resistin, fed-state and fasting insulin and increased expression of adipogenic transcription factors but lack glucose intolerance and insulin resistance. Our results are the first to present an OP model using DKO mice with features of decreased atherosclerosis, increased obesity, and non-alcoholic fatty liver disease. Our findings suggest the mechanistic role of reduced miR-155 expression in OP and present a new OP working model based on a single miRNA deficiency in diet-induced obese atherogenic mice. Furthermore, our results serve as a breakthrough in understanding the potential mechanism underlying OP and provide a new biomarker and novel therapeutic target for OP-related metabolic diseases.


Assuntos
Tecido Adiposo Branco/metabolismo , Aterosclerose/metabolismo , MicroRNAs/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Obesidade/metabolismo , Tecido Adiposo Branco/patologia , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/metabolismo , Aterosclerose/induzido quimicamente , Aterosclerose/genética , Gorduras na Dieta/efeitos adversos , Gorduras na Dieta/farmacologia , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , MicroRNAs/genética , Hepatopatia Gordurosa não Alcoólica/induzido quimicamente , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/induzido quimicamente , Obesidade/genética , Obesidade/patologia
6.
J Biol Chem ; 291(10): 4939-54, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26733204

RESUMO

Interleukin-17 (IL-17)-secreting T helper 17 cells were recently identified as a CD4(+) T helper subset and implicated in various inflammatory and autoimmune diseases. The issues of whether and by what mechanism hyperlipidemic stress induces IL-17A to activate aortic endothelial cells (ECs) and enhance monocyte adhesion remained largely unknown. Using biochemical, immunological, microarray, experimental data mining analysis, and pathological approaches focused on primary human and mouse aortic ECs (HAECs and MAECs) and our newly generated apolipoprotein E (ApoE)(-/-)/IL-17A(-/-) mice, we report the following new findings. 1) The hyperlipidemia stimulus oxidized low density lipoprotein up-regulated IL-17 receptor(s) in HAECs and MAECs. 2) IL-17A activated HAECs and increased human monocyte adhesion in vitro. 3) A deficiency of IL-17A reduced leukocyte adhesion to endothelium in vivo. 3) IL-17A activated HAECs and MAECs via up-regulation of proinflammatory cytokines IL-6, granulocyte-macrophage colony-stimulating factor (GM-CSF), chemokine CXC motif ligand 1 (CXCL1), and CXCL2. 4) IL-17A activated ECs specifically via the p38 mitogen-activated protein kinases (MAPK) pathway; the inhibition of p38 MAPK in ECs attenuated IL-17A-mediated activation by ameliorating the expression of the aforementioned proinflammatory cytokines, chemokines, and EC adhesion molecules including intercellular adhesion molecule 1. Taken together, our results demonstrate for the first time that IL-17A activates aortic ECs specifically via p38 MAPK pathway.


Assuntos
Apolipoproteínas E/metabolismo , Células Endoteliais/metabolismo , Hiperlipidemias/metabolismo , Interleucina-17/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Aorta/citologia , Aorta/metabolismo , Apolipoproteínas E/genética , Adesão Celular , Células Cultivadas , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Interleucina-17/genética , Interleucina-6/genética , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Monócitos/fisiologia , Receptores de Interleucina-17/genética , Receptores de Interleucina-17/metabolismo
7.
Arterioscler Thromb Vasc Biol ; 36(6): 1090-100, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27127201

RESUMO

OBJECTIVE: Hyperlipidemia-induced endothelial cell (EC) activation is considered as an initial event responsible for monocyte recruitment in atherogenesis. However, it remains poorly defined what is the mechanism underlying hyperlipidemia-induced EC activation. Here, we tested a novel hypothesis that mitochondrial reactive oxygen species (mtROS) serve as signaling mediators for EC activation in early atherosclerosis. APPROACH AND RESULTS: Metabolomics and transcriptomics analyses revealed that several lysophosphatidylcholine (LPC) species, such as 16:0, 18:0, and 18:1, and their processing enzymes, including Pla2g7 and Pla2g4c, were significantly induced in the aortas of apolipoprotein E knockout mice during early atherosclerosis. Using electron spin resonance and flow cytometry, we found that LPC 16:0, 18:0, and 18:1 induced mtROS in primary human aortic ECs, independently of the activities of nicotinamide adenine dinucleotide phosphate oxidase. Mechanistically, using confocal microscopy and Seahorse XF mitochondrial analyzer, we showed that LPC induced mtROS via unique calcium entry-mediated increase of proton leak and mitochondrial O2 reduction. In addition, we found that mtROS contributed to LPC-induced EC activation by regulating nuclear binding of activator protein-1 and inducing intercellular adhesion molecule-1 gene expression in vitro. Furthermore, we showed that mtROS inhibitor MitoTEMPO suppressed EC activation and aortic monocyte recruitment in apolipoprotein E knockout mice using intravital microscopy and flow cytometry methods. CONCLUSIONS: ATP synthesis-uncoupled, but proton leak-coupled, mtROS increase mediates LPC-induced EC activation during early atherosclerosis. These results indicate that mitochondrial antioxidants are promising therapies for vascular inflammation and cardiovascular diseases.


Assuntos
Aorta/metabolismo , Doenças da Aorta/metabolismo , Aterosclerose/metabolismo , Células Endoteliais/metabolismo , Lisofosfatidilcolinas/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Animais , Antioxidantes/farmacologia , Aorta/efeitos dos fármacos , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/patologia , Sinalização do Cálcio , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Hiperlipidemias/genética , Hiperlipidemias/metabolismo , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Lisofosfatidilcolinas/farmacologia , Potencial da Membrana Mitocondrial , Metabolômica/métodos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Fenótipo , Fatores de Tempo , Fator de Transcrição AP-1/genética , Fator de Transcrição AP-1/metabolismo
8.
J Biol Chem ; 290(31): 19307-18, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26085094

RESUMO

Vascular response is an essential pathological mechanism underlying various inflammatory diseases. This study determines whether IL-35, a novel responsive anti-inflammatory cytokine, inhibits vascular response in acute inflammation. Using a mouse model of LPS-induced acute inflammation and plasma samples from sepsis patients, we found that IL-35 was induced in the plasma of mice after LPS injection as well as in the plasma of sepsis patients. In addition, IL-35 decreased LPS-induced proinflammatory cytokines and chemokines in the plasma of mice. Furthermore, IL-35 inhibited leukocyte adhesion to the endothelium in the vessels of lung and cremaster muscle and decreased the numbers of inflammatory cells in bronchoalveolar lavage fluid. Mechanistically, IL-35 inhibited the LPS-induced up-regulation of endothelial cell (EC) adhesion molecule VCAM-1 through IL-35 receptors gp130 and IL-12Rß2 via inhibition of the MAPK-activator protein-1 (AP-1) signaling pathway. We also found that IL-27, which shares the EBI3 subunit with IL-35, promoted LPS-induced VCAM-1 in human aortic ECs and that EBI3-deficient mice had similar vascular response to LPS when compared with that of WT mice. These results demonstrated for the first time that inflammation-induced IL-35 inhibits LPS-induced EC activation by suppressing MAPK-AP1-mediated VCAM-1 expression and attenuates LPS-induced secretion of proinflammatory cytokines/chemokines. Our results provide insight into the control of vascular inflammation by IL-35 and suggest that IL-35 is an attractive novel therapeutic reagent for sepsis and cardiovascular diseases.


Assuntos
Células Endoteliais/imunologia , Interleucinas/fisiologia , Adulto , Idoso , Animais , Aterosclerose/sangue , Aterosclerose/imunologia , Aterosclerose/metabolismo , Estudos de Casos e Controles , Adesão Celular , Células Cultivadas , Células Endoteliais/metabolismo , Endotélio Vascular/patologia , Infecções por Escherichia coli/sangue , Infecções por Escherichia coli/imunologia , Feminino , Humanos , Leucócitos/imunologia , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Sepse/sangue , Sepse/imunologia , Fator de Transcrição AP-1/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo , Adulto Jovem
9.
Front Oncol ; 14: 1410057, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957316

RESUMO

A 54-year-old woman was admitted to the hospital with a left neck mass. Enhanced CT and ultrasound examinations revealed a lesion in the left sternocleidomastoid muscle. The patient undergone right thyroid lobe resection 8 years ago. Interestingly, the lesion on the sternocleidomastoid muscle, along with the left lobe of the patient's thyroid, visually appears to form a displaced and complete thyroid in the early Tc-99m-MIBI parathyroid scintigraphy. Combined with Tc-99m-MIBI scintigraphy and abnormal PTH and blood calcium levels, the consideration was given to the lesion in the sternocleidomastoid muscle as an ectopic parathyroid adenoma. Subsequent surgical pathology confirmed this suspicion.

10.
Behav Brain Res ; 458: 114730, 2024 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-37898351

RESUMO

The Barnes maze is a task used to assess spatial learning and memory in rodents. It requires animals to learn the position of a hole that can be used as an escape from a bright and open arena. The often-used parameters of latency and path length to measure learning and memory do not reflect the different navigation strategies chosen by the animals. Here, we propose an 11-point scoring scheme to classify the search strategies developed by the animals during the initial training as well as after the change of the escape target to a new position. Strategy scores add an important dimension to time and path length to assess the behavior in this popular maze.


Assuntos
Aprendizagem Espacial , Memória Espacial , Camundongos , Animais , Aprendizagem em Labirinto
11.
Biomolecules ; 13(5)2023 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-37238594

RESUMO

Dry eye disease is a chronic disease of the ocular surface characterized by abnormal tear film composition, tear film instability, and ocular surface inflammation, affecting 5% to 50% of the population worldwide. Autoimmune rheumatic diseases (ARDs) are systemic disorders with multi-organ involvement, including the eye, and play a significant role in dry eye. To date, most studies have focused on Sjögren's syndrome (one of the ARDs) since it manifests as two of the most common symptoms-dry eyes and a dry mouth-and attracts physicians to explore the relationship between dry eye and ARDs. Many patients complained of dry eye related symptoms before they were diagnosed with ARDs, and ocular surface malaise is a sensitive indicator of the severity of ARDs. In addition, ARD related dry eye is also associated with some retinal diseases directly or indirectly, which are described in this review. This review also summarizes the incidence, epidemiological characteristics, pathogenesis, and accompanying ocular lesions of ARD's related dry eye, emphasizing the potential role of dry eye in recognition and monitoring among ARDs patients.


Assuntos
Síndromes do Olho Seco , Síndrome do Desconforto Respiratório , Doenças Retinianas , Síndrome de Sjogren , Humanos , Síndromes do Olho Seco/complicações , Síndrome de Sjogren/complicações , Síndrome de Sjogren/diagnóstico , Lágrimas
13.
Hum Vaccin Immunother ; 18(5): 2090177, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-35731625

RESUMO

Rare cases of viral keratitis after coronavirus disease 2019 (COVID-19) vaccination have been reported. Furthermore, to our knowledge, cases of viral keratitis after two rounds of COVID-19 vaccination have not yet been reported. We report the case of a 19-year-old man without a history of keratitis, who developed viral keratitis soon after receiving the second and third doses of inactivated COVID-19 vaccines. Each time after the patient received treatment with topical and systemic drugs, his ocular symptoms were gradually relieved, and corrected visual acuity in both eyes returned to normal. COVID-19 vaccination may be associated with rare cases of the development of keratitis in individuals without a medical history of keratitis. Physicians should be aware of the possible relationship between ocular symptoms and adverse reactions to the COVID-19 vaccination. Despite the potential risks of COVID-19 vaccination, the benefits of immunization against the virus far outweigh these risks.


Assuntos
COVID-19 , Ceratite , Masculino , Humanos , Adulto Jovem , Adulto , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Vacinação/efeitos adversos , Anticorpos Antivirais , Vacinas de Produtos Inativados/efeitos adversos
14.
Heliyon ; 8(11): e11511, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36411881

RESUMO

An 80-year-old woman presented to our Ophthalmology Clinic for sudden pain and loss of vision in her right eye for seven days. She had a medical history of atrial fibrillation and cardiac valvular disease and received prophylactic antiplatelet therapy for more than ten years. Spontaneous suprachoroidal and orbital hemorrhage and secondary angle-closure glaucoma was diagnosed according to clinical manifestation and confirmed with B-scan ultrasound and Magnetic Resonance Imaging. The patient was given transscleral cyclophotocoagulation (TSCPC) combined with medical therapy to lower intraocular pressure (IOP). At a follow-up visit of 4 weeks after treatment, the patient's IOP was normal and symptoms such as eye pain and headache disappeared completely. In this case, we found that TSCPC was beneficial for lowering IOP and relieving pain.

15.
Front Pharmacol ; 13: 996635, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339559

RESUMO

Transdifferentiation of keratocytes into fibroblasts or further into myofibroblasts, which produced denser and more disorganized extracellular matrix, is the major cause of corneal fibrosis and scarring, leading to corneal blindness. TGF-ß1 is the critical cytokine for the myofibroblast's transdifferentiation and survival. Hypoxia Inducible Factor (HIF) was found to play an important role in promoting fibrosis in lung, kidney, and dermal tissues recently. Our preliminary study demonstrated that topical administration of the acriflavine (ACF), a drug inhibiting HIF dimerization, delayed corneal opacity and neovascularization after the alkali burn. To know whether ACF could prevent corneal fibrosis and improve corneal transparency, we created a mouse mechanical corneal injury model and found that topical administration of ACF significantly inhibited corneal fibrosis at day 14 post-injury. The reduction of myofibroblast marker α-SMA, and fibronectin, one of the disorganized extracellular matrix molecules, in the corneal stroma were confirmed by the examination of immunohistochemistry and real-time PCR. Furthermore, the ACF inhibited the expression of α-SMA and fibronectin in both TGF-ß1 stimulated or unstimulated fibroblasts in vitro. This effect was based on the inhibition of HIF signal pathways since the levels of the HIF-1α downstream genes including Slc2a1, Bnip3 and VEGFA were downregulated. To our knowledge, this is the first time to implicate that HIFs might be a new treatment target for controlling corneal fibrosis in mechanical corneal injuries.

16.
Aging Dis ; 13(3): 943-959, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35656116

RESUMO

Astrocytes play an essential role in the modulation of blood-brain barrier function. Neurological diseases induce the transformation of astrocytes into a neurotoxic A1 phenotype, exacerbating brain injury. However, the effect of A1 astrocytes on the BBB dysfunction after stroke is unknown. Adult male ICR mice (n=97) were subjected to 90-minute transient middle cerebral artery occlusion (tMCAO). Immunohistochemical staining of A1 (C3d) and A2 (S100A10) was performed to characterize phenotypic changes in astrocytes over time after tMCAO. The glucagon-like peptide-1 receptor agonist semaglutide was intraperitoneally injected into mice to inhibit A1 astrocytes. Infarct volume, atrophy volume, neurobehavioral outcomes, and BBB permeability were evaluated. RNA-seq was adopted to explore the potential targets and signaling pathways of A1 astrocyte-induced BBB dysfunction. Astrocytic C3d expression was increased, while expression of S100A10 was decreased in the first two weeks after tMCAO, reflecting a shift in the astrocytic phenotype. Semaglutide treatment reduced the expression of CD16/32 in microglia and C3d in astrocytes after ischemic stroke (p<0.05). Ischemia-induced brain infarct volume, atrophy volume and neuroinflammation were reduced in the semaglutide-treated mice, and neurobehavioral outcomes were improved compared to control mice (p<0.05). We further demonstrated that semaglutide treatment reduced the gap formation of tight junction proteins ZO-1, claudin-5 and occludin, as well as IgG leakage three days following tMCAO (p<0.05). In vitro experiments revealed that A1 astrocyte-conditioned medium disrupted BBB integrity. RNA-seq showed that A1 astrocytes were enriched in inflammatory factors and chemokines and significantly modulated the TNF and chemokine signaling pathways, which are closely related to barrier damage. We concluded that astrocytes undergo a phenotypic shift over time after ischemic stroke. C3d+/GFAP+ astrocytes aggravate BBB disruption, suggesting that inhibiting C3d+/GFAP+ astrocyte formation represents a novel strategy for the treatment of ischemic stroke.

17.
J Immunol Res ; 2022: 1433323, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35211628

RESUMO

We performed a database mining on 102 transcriptomic datasets for the expressions of 29 m6A-RNA methylation (epitranscriptomic) regulators (m6A-RMRs) in 41 diseases and cancers and made significant findings: (1) a few m6A-RMRs were upregulated; and most m6A-RMRs were downregulated in sepsis, acute respiratory distress syndrome, shock, and trauma; (2) half of 29 m6A-RMRs were downregulated in atherosclerosis; (3) inflammatory bowel disease and rheumatoid arthritis modulated m6A-RMRs more than lupus and psoriasis; (4) some organ failures shared eight upregulated m6A-RMRs; end-stage renal failure (ESRF) downregulated 85% of m6A-RMRs; (5) Middle-East respiratory syndrome coronavirus infections modulated m6A-RMRs the most among viral infections; (6) proinflammatory oxPAPC modulated m6A-RMRs more than DAMP stimulation including LPS and oxLDL; (7) upregulated m6A-RMRs were more than downregulated m6A-RMRs in cancer types; five types of cancers upregulated ≥10 m6A-RMRs; (8) proinflammatory M1 macrophages upregulated seven m6A-RMRs; (9) 86% of m6A-RMRs were differentially expressed in the six clusters of CD4+Foxp3+ immunosuppressive Treg, and 8 out of 12 Treg signatures regulated m6A-RMRs; (10) immune checkpoint receptors TIM3, TIGIT, PD-L2, and CTLA4 modulated m6A-RMRs, and inhibition of CD40 upregulated m6A-RMRs; (11) cytokines and interferons modulated m6A-RMRs; (12) NF-κB and JAK/STAT pathways upregulated more than downregulated m6A-RMRs whereas TP53, PTEN, and APC did the opposite; (13) methionine-homocysteine-methyl cycle enzyme Mthfd1 downregulated more than upregulated m6A-RMRs; (14) m6A writer RBM15 and one m6A eraser FTO, H3K4 methyltransferase MLL1, and DNA methyltransferase, DNMT1, regulated m6A-RMRs; and (15) 40 out of 165 ROS regulators were modulated by m6A eraser FTO and two m6A writers METTL3 and WTAP. Our findings shed new light on the functions of upregulated m6A-RMRs in 41 diseases and cancers, nine cellular and molecular mechanisms, novel therapeutic targets for inflammatory disorders, metabolic cardiovascular diseases, autoimmune diseases, organ failures, and cancers.


Assuntos
Aterosclerose/genética , Epigênese Genética , Neoplasias/genética , RNA Mensageiro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Doenças Autoimunes/genética , Conjuntos de Dados como Assunto , Perfilação da Expressão Gênica , Humanos , Inflamação/genética , Doenças Metabólicas/genética , Metilação
18.
Mol Plant Pathol ; 22(6): 710-726, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33835616

RESUMO

Fus3/Kss1, also known as Pmk1 in several pathogenic fungi, is a component of the mitogen-activated protein kinase (MAPK) signalling pathway that functions as a regulator in fungal development, stress response, mating, and pathogenicity. Cytospora chrysosperma, a notorious woody plant-pathogenic fungus, causes canker disease in many species, and its Pmk1 homolog, CcPmk1, is required for fungal development and pathogenicity. However, the global regulation network of CcPmk1 is still unclear. In this study, we compared transcriptional analysis between a CcPmk1 deletion mutant and the wild type during the simulated infection process. A subset of transcription factor genes and putative effector genes were significantly down-regulated in the CcPmk1 deletion mutant, which might be important for fungal pathogenicity. Additionally, many tandem genes were found to be regulated by CcPmk1. Eleven out of 68 core secondary metabolism biosynthesis genes and several gene clusters were significantly down-regulated in the CcPmk1 deletion mutant. GO annotation of down-regulated genes showed that the ribosome biosynthesis-related processes were over-represented in the CcPmk1 deletion mutant. Comparison of the CcPmk1-regulated genes with the Pmk1-regulated genes from Magnaporthe oryzae revealed only a few overlapping regulated genes in both CcPmk1 and Pmk1, while the enrichment GO terms in the ribosome biosynthesis-related processes were also found. Subsequently, we calculated that in vitro feeding artificial small interference RNAs of CcPmk1 could silence the target gene, resulting in inhibited fungal growth. Furthermore, silencing of BcPmk1 in Botrytis cinerea with conserved CcPmk1 and BcPmk1 fragments could significantly compromise fungal virulence using the virus-induced gene silencing system in Nicotiana benthamiana. These results suggest that CcPmk1 functions as a regulator of pathogenicity and can potentially be designed as a target for broad-spectrum disease control, but unintended effects on nonpathogenic fungi need to be avoided.


Assuntos
Ascomicetos/genética , Botrytis/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Doenças das Plantas/microbiologia , Transdução de Sinais , Árvores/microbiologia , Ascomicetos/patogenicidade , Botrytis/patogenicidade , Regulação para Baixo , Proteínas Fúngicas/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação , Doenças das Plantas/prevenção & controle , Nicotiana/microbiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação para Cima
19.
JCI Insight ; 6(19)2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34622804

RESUMO

Tregs play vital roles in suppressing atherogenesis. Pathological conditions reshape Tregs and increase Treg-weakening plasticity. It remains unclear how Tregs preserve their function and how Tregs switch into alternative phenotypes in the environment of atherosclerosis. In this study, we observed a great induction of CD4+Foxp3+ Tregs in the spleen and aorta of ApoE-/- mice, accompanied by a significant increase of plasma IL-35 levels. To determine if IL-35 devotes its role in the rise of Tregs, we generated IL-35 subunit P35-deficient (IL-35P35-deficient) mice on an ApoE-/- background and found Treg reduction in the spleen and aorta compared with ApoE-/- controls. In addition, our RNA sequencing data show the elevation of a set of chemokine receptor transcripts in the ApoE-/- Tregs, and we have validated higher CCR5 expression in ApoE-/- Tregs in the presence of IL-35 than in the absence of IL-35. Furthermore, we observed that CCR5+ Tregs in ApoE-/- have lower Treg-weakening AKT-mTOR signaling, higher expression of inhibitory checkpoint receptors TIGIT and PD-1, and higher expression of IL-10 compared with WT CCR5+ Tregs. In conclusion, IL-35 counteracts hyperlipidemia in maintaining Treg-suppressive function by increasing 3 CCR5-amplified mechanisms, including Treg migration, inhibition of Treg weakening AKT-mTOR signaling, and promotion of TIGIT and PD-1 signaling.


Assuntos
Aorta/metabolismo , Aterosclerose/genética , Interleucinas/genética , Baço/metabolismo , Linfócitos T Reguladores/metabolismo , Animais , Aterosclerose/metabolismo , Linfócitos T CD4-Positivos , Movimento Celular , Fatores de Transcrição Forkhead , Interleucina-10/genética , Interleucinas/metabolismo , Camundongos , Camundongos Knockout , Camundongos Knockout para ApoE , Receptor de Morte Celular Programada 1/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores CCR5/genética , Receptores Imunológicos/genética , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
20.
Front Immunol ; 11: 619951, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33488632

RESUMO

Metabolically healthy obesity (MHO) accounts for roughly 35% of all obese patients. There is no clear consensus that has been reached on whether MHO is a stable condition or merely a transitory period between metabolically healthy lean and metabolically unhealthy obesity (MUO). Additionally, the mechanisms underlying MHO and any transition to MUO are not clear. Macrophages are the most common immune cells in adipose tissues and have a significant presence in atherosclerosis. Fas (or CD95), which is highly expressed on macrophages, is classically recognized as a pro-apoptotic cell surface receptor. However, Fas also plays a significant role as a pro-inflammatory molecule. Previously, we established a mouse model (ApoE-/-/miR155-/-; DKO mouse) of MHO, based on the criteria of not having metabolic syndrome (MetS) and insulin resistance (IR). In our current study, we hypothesized that MHO is a transition phase toward MUO, and that inflammation driven by our newly classified CD95+CD86- macrophages is a novel mechanism for this transition. We found that, with extended (24 weeks) high-fat diet feeding (HFD), MHO mice became MUO, shown by increased atherosclerosis. Mechanistically, we found the following: 1) at the MHO stage, DKO mice exhibited increased pro-inflammatory markers in adipose tissue, including CD95, and serum; 2) total adipose tissue macrophages (ATMs) increased; 3) CD95+CD86- subset of ATMs also increased; and 4) human aortic endothelial cells (HAECs) were activated (as determined by upregulated ICAM1 expression) when incubated with conditioned media from CD95+-containing DKO ATMs and human peripheral blood mononuclear cells-derived macrophages in comparison to respective controls. These results suggest that extended HFD in MHO mice promotes vascular inflammation and atherosclerosis via increasing CD95+ pro-inflammatory ATMs. In conclusion, we have identified a novel molecular mechanism underlying MHO transition to MUO with HFD. We have also found a previously unappreciated role of CD95+ macrophages as a potentially novel subset that may be utilized to assess pro-inflammatory characteristics of macrophages, specifically in adipose tissue in the absence of pro-inflammatory miR-155. These findings have provided novel insights on MHO transition to MUO and new therapeutic targets for the future treatment of MUO, MetS, other obese diseases, and type II diabetes.


Assuntos
Inflamação/imunologia , Macrófagos/fisiologia , MicroRNAs/fisiologia , Obesidade Metabolicamente Benigna/imunologia , Receptor fas/análise , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Animais , Aorta , Doenças da Aorta/etiologia , Aterosclerose/etiologia , Antígeno B7-2/análise , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Dieta Hiperlipídica/efeitos adversos , Progressão da Doença , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Feminino , Humanos , Inflamação/complicações , Molécula 1 de Adesão Intercelular/biossíntese , Macrófagos/química , Macrófagos/classificação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Obesidade Metabolicamente Benigna/metabolismo , Obesidade Metabolicamente Benigna/patologia , Vasculite/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA