Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 98(2): e0200223, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38289108

RESUMO

Foot-and-mouth disease virus (FMDV) remains a challenge for cloven-hooved animals. The currently licensed FMDV vaccines induce neutralizing antibody (NAb)-mediated protection but show defects in the early protection. Dendritic cell (DC) vaccines have shown great potency in inducing rapid T-cell immunity in humans and mice. Whether DC vaccination could enhance early protection against FMDV has not been elaborately explored in domestic pigs. In this study, we employed DC vaccination as an experimental approach to study the roles of cellular immunity in the early protection against FMDV in pigs. Autologous DCs were differentiated from the periphery blood mononuclear cells of each pig, pulsed with inactivated FMDV (iFMDV-DC) and treated with LPS, and then injected into the original pigs. The cellular immune responses and protective efficacy elicited by the iFMDV-DC were examined by multicolor flow cytometry and tested by FMDV challenge. The results showed that autologous iFMDV-DC immunization induced predominantly FMDV-specific IFN-γ-producing CD4+ T cells and cytotoxic CD8+ T cells (CTLs), high NAb titers, compared to the inactivated FMDV vaccine, and accelerated the development of memory CD4 and CD8 T cells, which was concomitantly associated with early protection against FMDV virulent strain in pigs. Such early protection was associated with the rapid proliferation of secondary T-cell response after challenge and significantly contributed by secondary CD8 effector memory T cells. These results demonstrated that rapid induction of cellular immunity through DC immunization is important for improving early protection against FMDV. Enhancing cytotoxic CD8+ T cells may facilitate the development of more effective FMDV vaccines.IMPORTANCEAlthough the currently licensed FMDV vaccines provide NAb-mediated protection, they have defects in early immune protection, especially in pigs. In this study, we demonstrated that autologous swine DC immunization augmented the cellular immune response and induced an early protective response against FMDV in pigs. This approach induced predominantly FMDV-specific IFN-γ-producing CD4+ T cells and cytotoxic CD8+ T cells, high NAb titers, and rapid development of memory CD4 and CD8 T cells. Importantly, the early protection conferred by this DC immunization is more associated with secondary CD8+ T response rather than NAbs. Our findings highlighted the importance of enhancing cytotoxic CD8+ T cells in early protection to FMDV in addition to Th1 response and identifying a strategy or adjuvant comparable to the DC vaccine might be a future direction for improving the current FMDV vaccines.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Vacinas Virais , Animais , Humanos , Camundongos , Anticorpos Neutralizantes , Anticorpos Antivirais , Linfócitos T CD8-Positivos , Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Vírus da Febre Aftosa/fisiologia , Suínos , Vacinação
2.
J Virol ; 97(11): e0132223, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37882519

RESUMO

IMPORTANCE: Chickens immunized with the infectious laryngotracheitis chicken embryo origin (CEO) vaccine (Medivac, PT Medion Farma Jaya) experience adverse reactions, hindering its safety and effective use in poultry flocks. To improve the effect of the vaccine, we sought to find a strategy to alleviate the respiratory reactions associated with the vaccine. Here, we confirmed that co-administering the CEO vaccine with chIL-2 by oral delivery led to significant alleviation of the vaccine reactions in chickens after immunization. Furthermore, we found that the co-administration of chIL-2 with the CEO vaccine reduced the clinical signs of the CEO vaccine while enhancing natural killer cells and cytotoxic T lymphocyte response to decrease viral loads in their tissues, particularly in the trachea and conjunctiva. Importantly, we demonstrated that the chIL-2 treatment can ameliorate the replication of the CEO vaccine without compromising its effectiveness. This study provides new insights into further applications of chIL-2 and a promising strategy for alleviating the adverse reaction of vaccines.


Assuntos
Galinhas , Infecções por Herpesviridae , Herpesvirus Galináceo 1 , Interleucina-2 , Células Matadoras Naturais , Linfócitos T Citotóxicos , Vacinas Virais , Animais , Administração Oral , Galinhas/imunologia , Galinhas/virologia , Túnica Conjuntiva/virologia , Infecções por Herpesviridae/imunologia , Infecções por Herpesviridae/prevenção & controle , Infecções por Herpesviridae/veterinária , Infecções por Herpesviridae/virologia , Herpesvirus Galináceo 1/imunologia , Interleucina-2/administração & dosagem , Interleucina-2/imunologia , Células Matadoras Naturais/imunologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/virologia , Doenças Respiratórias/imunologia , Doenças Respiratórias/prevenção & controle , Doenças Respiratórias/veterinária , Doenças Respiratórias/virologia , Linfócitos T Citotóxicos/imunologia , Traqueia/virologia , Carga Viral , Vacinas Virais/administração & dosagem , Vacinas Virais/efeitos adversos , Vacinas Virais/biossíntese , Vacinas Virais/imunologia
3.
Vet Res ; 55(1): 28, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38449049

RESUMO

The prevalence of porcine reproductive and respiratory syndrome virus 1 (PRRSV1) isolates has continued to increase in Chinese swine herds in recent years. However, no effective control strategy is available for PRRSV1 infection in China. In this study, we generated the first infectious cDNA clone (rHLJB1) of a Chinese PRRSV1 isolate and subsequently used it as a backbone to construct an ORF2-6 chimeric virus (ORF2-6-CON). This virus contained a synthesized consensus sequence of the PRRSV1 ORF2-6 gene encoding all the envelope proteins. The ORF2-6 consensus sequence shared > 90% nucleotide similarity with four representative strains (Amervac, BJEU06-1, HKEU16 and NMEU09-1) of PRRSV1 in China. ORF2-6-CON had replication efficacy similar to that of the backbone rHLJB1 virus in primary alveolar macrophages (PAMs) and exhibited cell tropism in Marc-145 cells. Piglet inoculation and challenge studies indicated that ORF2-6-CON is not pathogenic to piglets and can induce enhanced cross-protection against a heterologous SD1291 isolate. Notably, ORF2-6-CON inoculation induced higher levels of heterologous neutralizing antibodies (nAbs) against SD1291 than rHLJB1 inoculation, which was concurrent with a higher percentage of T follicular helper (Tfh) cells in tracheobronchial lymph nodes (TBLNs), providing the first clue that porcine Tfh cells are correlated with heterologous PRRSV nAb responses. The number of SD1291-strain-specific IFNγ-secreting cells was similar in ORF2-6-CON-inoculated and rHLJB1-inoculated pigs. Overall, our findings support that the Marc-145-adapted ORF2-6-CON can trigger Tfh cell and heterologous nAb responses to confer improved cross-protection and may serve as a candidate strain for the development of a cross-protective PRRSV1 vaccine.


Assuntos
Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Suínos , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Células T Auxiliares Foliculares , Anticorpos Neutralizantes , China , Sequência Consenso
4.
J Gen Virol ; 104(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37159409

RESUMO

Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most devastating pathogens to the global swine industry. Many commercial PRRSV vaccines, originally designed to provide homologous protection, have shown partial protection against heterologous strains. However, the protective immune mechanisms mediated by these PRRSV vaccines are not fully understood. In this study, we investigated the factors responsible for partial protection conferred by an attenuated Chinese HP-PRRSV vaccine (TJM-F92) against heterologous NADC30-like PRRSV. By analysing peripheral T-cell responses induced by the TJM-F92 vaccine and local and systemic memory responses following challenge with NADC30-like PRRSV (SD17-38 strains) as well as neutralizing antibody response, we found that the TJM-F92 vaccine induced a significant expansion of CD8 T cells but not CD4 T cells or γδ T cells. The expanded CD8 T cells exhibited a phenotype of effector memory T cells and secreted IFN-γ upon restimulation with SD17-38 strains in vitro. In addition, only CD8 T cells in the prior immunized pigs rapidly expanded in the blood and spleen after heterologous challenge, with higher magnitude, compared to the unvaccinated pigs, showing a remarkable memory response. In contrast, no obvious humoral immune response was enhanced in the vaccinated and challenged pigs, and no heterologous neutralizing antibodies were detected throughout the experiment. Our results suggested that CD8 T cells elicited by the TJM-F92 vaccine may be responsible for partial heterologous protection against NADC30-like PRRSV strains and potentially recognize the conserved antigens among PRRSV strains.


Assuntos
Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Anticorpos Neutralizantes , Linfócitos T CD8-Positivos , Suínos , Vacinas Atenuadas
5.
Int J Mol Sci ; 24(4)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36835527

RESUMO

The RIG-I-like receptors (RLRs) play critical roles in sensing and combating viral infections, particularly RNA virus infections. However, there is a dearth of research on livestock RLRs due to a lack of specific antibodies. In this study, we purified porcine RLR proteins and developed monoclonal antibodies (mAbs) against porcine RLR members RIG-I, MDA5 and LGP2, for which one, one and two hybridomas were obtained, respectively. The porcine RIG-I and MDA5 mAbs each targeted the regions beyond the N-terminal CARDs domains, whereas the two LGP2 mAbs were both directed to the N-terminal helicase ATP binding domain in the Western blotting. In addition, all of the porcine RLR mAbs recognized the corresponding cytoplasmic RLR proteins in the immunofluorescence and immunochemistry assays. Importantly, both RIG-I and MDA5 mAbs are porcine specific, without demonstrating any cross-reactions with the human counterparts. As for the two LGP2 mAbs, one is porcine specific, whereas another one reacts with both porcine and human LGP2. Thus, our study not only provides useful tools for porcine RLR antiviral signaling research, but also reveals the porcine species specificity, giving significant insights into porcine innate immunity and immune biology.


Assuntos
RNA Helicases DEAD-box , RNA Helicases , Suínos , Animais , Humanos , RNA Helicases DEAD-box/metabolismo , RNA Helicases/metabolismo , Helicase IFIH1 Induzida por Interferon/genética , Anticorpos Monoclonais , Especificidade da Espécie , Proteína DEAD-box 58 , Imunidade Inata
6.
Vet Res ; 52(1): 74, 2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34044890

RESUMO

Due to the substantial genetic diversity of porcine reproductive and respiratory syndrome virus (PRRSV), commercial PRRS vaccines fail to provide sufficient cross protection. Previous studies have confirmed the existence of PRRSV broadly neutralizing antibodies (bnAbs). However, bnAbs are rarely induced by either natural infection or vaccination. In this study, we designed and synthesized a consensus sequence of PRRSV2 ORF2-6 genes (ORF2-6-CON) encoding all envelope proteins based on 30 representative Chinese PRRSV isolates. The ORF2-6-CON sequence shared > 90% nucleotide identities to all four lineages of PRRSV2 isolates in China. A chimeric virus (rJS-ORF2-6-CON) containing the ORF2-6-CON was generated using the avirulent HP-PRRSV2 JSTZ1712-12 infectious clone as a backbone. The rJS-ORF2-6-CON has similar replication efficiency as the backbone virus in vitro. Furthermore, pig inoculation and challenge studies showed that rJS-ORF2-6-CON is not pathogenic to piglets and confers better cross protection against the virulent NADC30-like isolate than a commercial HP-PRRS modified live virus (MLV) vaccine. Noticeably, the rJS-ORF2-6-CON strain could induce bnAbs while the MLV strain only induced homologous nAbs. In addition, the lineages of VDJ repertoires potentially associated with distinct nAbs were also characterized. Overall, our results demonstrate that rJS-ORF2-6-CON is a promising candidate for the development of a PRRS genetic engineered vaccine conferring cross protection.


Assuntos
Anticorpos Amplamente Neutralizantes/imunologia , Proteção Cruzada/imunologia , Fases de Leitura Aberta , Síndrome Respiratória e Reprodutiva Suína/imunologia , Vírus da Síndrome Respiratória e Reprodutiva Suína/imunologia , Animais , Anticorpos Amplamente Neutralizantes/genética , Sequência Consenso , Vírus da Síndrome Respiratória e Reprodutiva Suína/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/patogenicidade , Sus scrofa , Suínos , Virulência
7.
Cell Mol Life Sci ; 77(16): 3103-3116, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32080753

RESUMO

Marek's disease virus (MDV) is a highly oncogenic alphaherpesvirus that causes deadly T-cell lymphomas and serves as a natural virus-induced tumor model in chickens. Although Marek's disease (MD) is well controlled by current vaccines, the evolution of MDV field viruses towards increasing virulence is concerning as a better vaccine to combat very virulent plus MDV is still lacking. Our understanding of molecular and cellular immunity to MDV and its immunopathogenesis has significantly improved, but those findings about cellular immunity to MDV are largely out-of-date, hampering the development of more effective vaccines against MD. T-cell-mediated cellular immunity was thought to be of paramount importance against MDV. However, MDV also infects macrophages, B cells and T cells, leading to immunosuppression and T-cell lymphoma. Additionally, there is limited information about how uninfected immune cells respond to MDV infection or vaccination, specifically, the mechanisms by which T cells are activated and recognize MDV antigens and how the function and properties of activated T cells correlate with immune protection against MDV or MD tumor. The current review revisits the roles of each immune cell subset and its effector mechanisms in the host immune response to MDV infection or vaccination from the point of view of comparative immunology. We particularly emphasize areas of research requiring further investigation and provide useful information for rational design and development of novel MDV vaccines.


Assuntos
Galinhas/imunologia , Galinhas/virologia , Imunidade Celular/imunologia , Doença de Marek/imunologia , Vírus Oncogênicos/imunologia , Linfócitos T/imunologia , Animais , Herpesvirus Galináceo 2/imunologia , Humanos , Doença de Marek/virologia , Linfócitos T/virologia , Virulência/imunologia
8.
PLoS Pathog ; 13(5): e1006384, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28475642

RESUMO

A number of nonclassical MHC Ib molecules recognizing distinct microbial antigens have been implicated in the immune response to Mycobacterium tuberculosis (Mtb). HLA-E has been identified to present numerous Mtb peptides to CD8+ T cells, with multiple HLA-E-restricted cytotoxic T lymphocyte (CTL) and regulatory T cell lines isolated from patients with active and latent tuberculosis (TB). In other disease models, HLA-E and its mouse homolog Qa-1 can act as antigen presenting molecules as well as regulators of the immune response. However, it is unclear what precise role(s) HLA-E/Qa-1 play in the immune response to Mtb. In this study, we found that murine Qa-1 can bind and present Mtb peptide antigens to CD8+ T effector cells during aerosol Mtb infection. Further, mice lacking Qa-1 (Qa-1-/-) were more susceptible to high-dose Mtb infection compared to wild-type controls, with higher bacterial burdens and increased mortality. The increased susceptibility of Qa-1-/- mice was associated with dysregulated T cells that were more activated and produced higher levels of pro-inflammatory cytokines. T cells from Qa-1-/- mice also had increased expression of inhibitory and apoptosis-associated cell surface markers such as CD94/NKG2A, KLRG1, PD-1, Fas-L, and CTLA-4. As such, they were more prone to cell death and had decreased capacity in promoting the killing of Mtb in infected macrophages. Lastly, comparing the immune responses of Qa-1 mutant knock-in mice deficient in either Qa-1-restricted CD8+ Tregs (Qa-1 D227K) or the inhibitory Qa-1-CD94/NKG2A interaction (Qa-1 R72A) with Qa-1-/- and wild-type controls indicated that both of these Qa-1-mediated mechanisms were involved in suppression of the immune response in Mtb infection. Our findings reveal that Qa-1 participates in the immune response to Mtb infection by presenting peptide antigens as well as regulating immune responses, resulting in more effective anti-Mtb immunity.


Assuntos
Antígenos de Bactérias/imunologia , Linfócitos T CD8-Positivos/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose/microbiologia , Animais , Apresentação de Antígeno/imunologia , Citocinas/imunologia , Humanos , Macrófagos/imunologia , Camundongos , Linfócitos T Citotóxicos/imunologia , Linfócitos T Reguladores/imunologia , Tuberculose/imunologia
9.
Virol J ; 16(1): 108, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31455344

RESUMO

Bovine leukemia virus (BLV) causes enzootic bovine leucosis and is widely spread worldwide, except several European countries, Australia and New Zealand. Although BLV is highly prevalent in China, information about the genetic diversity and evolutionary dynamics of BLV among Chinese dairy herds is still lacking. To determine the genetic variability of BLV, 219 cows from four cities of Ningxia province of China were screened for BLV infection by fluorescence resonance energy transfer (FRET)-PCR and sequencing, 16 selected positive samples were subjected to molecular characterization. Phylogenetic analysis using the neighbor-joining (NJ) method on complete sequences of envelope (env) gene of BLV obtained from China and those available in GenBank (representing BLV genotypes 1-10) revealed that those Chinese strains belonged to genotypes 4 and 6. Totally, 23 mutations were identified and 16 of them were determined to be unique mutations among Chinese strains. Alignment of the deduced amino acid sequences demonstrated six mutations in glycoprotein 51 (gp51) and three mutations in glycoprotein 30 (gp30) located in the identified neutralizing domain (ND), CD8+ T cell epitope, E-epitope, B-epitope, gp51N12 and cytoplasmic domain of transmembrane protein. This study reported for the first time the BLV genotype 4 in China, and further studies are warranted to compare its immunogenicity and pathogenicity with other BLV genotypes.


Assuntos
Doenças dos Bovinos/virologia , Leucose Enzoótica Bovina/virologia , Evolução Molecular , Variação Genética , Genótipo , Vírus da Leucemia Bovina/genética , Mutação , Animais , Bovinos , China , Indústria de Laticínios , Feminino , Genes env , Vírus da Leucemia Bovina/classificação , Filogenia , Análise de Sequência de DNA , Proteínas do Envelope Viral/genética
10.
PLoS Pathog ; 12(6): e1005688, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27272249

RESUMO

MHC Ib-restricted CD8+ T cells have been implicated in host defense against Mycobacterium tuberculosis (Mtb) infection. However, the relative contribution of various MHC Ib-restricted T cell populations to anti-mycobacterial immunity remains elusive. In this study, we used mice that lack MHC Ia (Kb-/-Db-/-), MHC Ia/H2-M3 (Kb-/-Db-/-M3-/-), or ß2m (ß2m-/-) to study the role of M3-restricted and other MHC Ib-restricted T cells in immunity against Mtb. Unlike their dominant role in Listeria infection, we found that M3-restricted CD8+ T cells only represented a small proportion of the CD8+ T cells responding to Mtb infection. Non-M3, MHC Ib-restricted CD8+ T cells expanded preferentially in the lungs of Mtb-infected Kb-/-Db-/-M3-/- mice, exhibited polyfunctional capacities and conferred protection against Mtb. These MHC Ib-restricted CD8+ T cells recognized several Mtb-derived protein antigens at a higher frequency than MHC Ia-restricted CD8+ T cells. The presentation of Mtb antigens to MHC Ib-restricted CD8+ T cells was mostly ß2m-dependent but TAP-independent. Interestingly, a large proportion of Mtb-specific MHC Ib-restricted CD8+ T cells in Kb-/-Db-/-M3-/- mice were Qa-2-restricted while no considerable numbers of MR1 or CD1-restricted Mtb-specific CD8+ T cells were detected. Our findings indicate that nonclassical CD8+ T cells other than the known M3, CD1, and MR1-restricted CD8+ T cells contribute to host immune responses against Mtb infection. Targeting these MHC Ib-restricted CD8+ T cells would facilitate the design of better Mtb vaccines with broader coverage across MHC haplotypes due to the limited polymorphism of MHC class Ib molecules.


Assuntos
Antígenos de Bactérias/imunologia , Linfócitos T CD8-Positivos/imunologia , Citotoxicidade Imunológica/imunologia , Subpopulações de Linfócitos T/imunologia , Tuberculose/imunologia , Animais , Modelos Animais de Doenças , Citometria de Fluxo , Antígenos de Histocompatibilidade Classe I , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mycobacterium tuberculosis/imunologia , Reação em Cadeia da Polimerase em Tempo Real
11.
Proc Natl Acad Sci U S A ; 112(16): 5111-6, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25820174

RESUMO

Silencing of interleukin-32 (IL-32) in a differentiated human promonocytic cell line impairs killing of Mycobacterium tuberculosis (MTB) but the role of IL-32 in vivo against MTB remains unknown. To study the effects of IL-32 in vivo, a transgenic mouse was generated in which the human IL-32γ gene is expressed using the surfactant protein C promoter (SPC-IL-32γTg). Wild-type and SPC-IL-32γTg mice were infected with a low-dose aerosol of a hypervirulent strain of MTB (W-Beijing HN878). At 30 and 60 d after infection, the transgenic mice had 66% and 85% fewer MTB in the lungs and 49% and 68% fewer MTB in the spleens, respectively; the transgenic mice also exhibited greater survival. Increased numbers of host-protective innate and adaptive immune cells were present in SPC-IL-32γTg mice, including tumor necrosis factor-alpha (TNFα) positive lung macrophages and dendritic cells, and IFN-gamma (IFNγ) and TNFα positive CD4(+) and CD8(+) T cells in the lungs and mediastinal lymph nodes. Alveolar macrophages from transgenic mice infected with MTB ex vivo had reduced bacterial burden and increased colocalization of green fluorescent protein-labeled MTB with lysosomes. Furthermore, mouse macrophages made to express IL-32γ but not the splice variant IL-32ß were better able to limit MTB growth than macrophages capable of producing both. The lungs of patients with tuberculosis showed increased IL-32 expression, particularly in macrophages of granulomas and airway epithelial cells but also B cells and T cells. We conclude that IL-32γ enhances host immunity to MTB.


Assuntos
Interleucinas/metabolismo , Mycobacterium tuberculosis/patogenicidade , Tuberculose/imunologia , Tuberculose/prevenção & controle , Imunidade Adaptativa/imunologia , Animais , Antígenos Ly/metabolismo , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , Humanos , Imunidade Inata/imunologia , Interferon gama , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Linfonodos/imunologia , Linfonodos/patologia , Macrófagos Alveolares/imunologia , Camundongos Transgênicos , Mutação/genética , Subfamília B de Receptores Semelhantes a Lectina de Células NK/metabolismo , Proteína C Associada a Surfactante Pulmonar/metabolismo , Sítios de Splice de RNA/genética , Linfócitos T Reguladores/imunologia , Transfecção , Transgenes , Tuberculose/microbiologia , Fator de Necrose Tumoral alfa/metabolismo , Virulência/imunologia
12.
Front Immunol ; 15: 1438371, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39081314

RESUMO

Introduction: Variant pseudorabies virus (PRV) is a newly emerged zoonotic pathogen that can cause human blindness. PRV can take advantage of its large genome and multiple non-essential genes to construct recombinant attenuated vaccines carrying foreign genes. However, a major problem is that the foreign genes in recombinant PRV are only integrated into the genome for independent expression, rather than assembled on the surface of virion. Methods: We reported a recombinant PRV with deleted gE/TK genes and an inserted porcine circovirus virus 2 (PCV2) Cap gene into the extracellular domain of the PRV gE gene using the Cre-loxP recombinant system combined with the CRISPR-Cas9 gene editing system. This recombinant PRV (PRV-Cap), with the envelope-embedded Cap protein, exhibits a similar replication ability to its parental virus. Results: An immunogenicity assay revealed that PRV-Cap immunized mice have 100% resistance to lethal PRV and PCV2 attacks. Neutralization antibody and ELISPOT detections indicated that PRV-Cap can enhance neutralizing antibodies to PRV and produce IFN-γ secreting T cells specific for both PRV and PCV2. Immunological mechanistic investigation revealed that initial immunization with PRV-Cap stimulates significantly early activation and expansion of CD69+ T cells, promoting the activation of CD4 Tfh cell dependent germinal B cells and producing effectively specific effector memory T and B cells. Booster immunization with PRV-Cap recalled the activation of PRV-specific IFN-γ+IL-2+CD4+ T cells and IFN-γ+TNF-α+CD8+ T cells, as well as PCV2-specific IFN-γ+TNF-α+CD8+ T cells. Conclusion: Collectively, our data suggested an immunological mechanism in that the recombinant PRV with envelope-assembled PCV2 Cap protein can serve as an excellent vaccine candidate for combined immunity against PRV and PCV2, and provided a cost-effective method for the production of PRV- PCV2 vaccine.


Assuntos
Infecções por Circoviridae , Circovirus , Herpesvirus Suídeo 1 , Animais , Circovirus/imunologia , Circovirus/genética , Camundongos , Herpesvirus Suídeo 1/imunologia , Herpesvirus Suídeo 1/genética , Infecções por Circoviridae/imunologia , Infecções por Circoviridae/prevenção & controle , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Vacinas Virais/imunologia , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/genética , Suínos , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/sangue , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/genética , Vacinas Sintéticas/imunologia , Pseudorraiva/imunologia , Pseudorraiva/prevenção & controle , Feminino , Camundongos Endogâmicos BALB C
13.
Front Microbiol ; 15: 1328177, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419627

RESUMO

African swine fever (ASF) caused by the African swine fever virus (ASFV) is a fatal and highly contagious disease of domestic pigs characterized by rapid disease progression and death within 2 weeks. How the immune cells respond to acute ASFV infection and contribute to the immunopathogenesis of ASFV has not been completely understood. In this study, we examined the activation, apoptosis, and functional changes of distinct immune cells in domestic pigs following acute infection with the ASFV CADC_HN09 strain using multicolor flow cytometry. We found that ASFV infection induced broad apoptosis of DCs, monocytes, neutrophils, and lymphocytes in the peripheral blood of pigs over time. The expression of MHC class II molecule (SLA-DR/DQ) on monocytes and conventional DCs as well as CD21 expression on B cells were downregulated after ASFV infection, implying a potential impairment of antigen presentation and humoral response. Further examination of CD69 and ex vivo expression of IFN-γ on immune cells showed that T cells were transiently activated and expressed IFN-γ as early as 5 days post-infection. However, the capability of T cells to produce cytokines was significantly impaired in the infected pigs when stimulated with mitogen. These results suggest that the adaptive cellular immunity to ASFV might be initiated but later overridden by ASFV-induced immunosuppression. Our study clarified the cell types that were affected by ASFV infection and contributed to lymphopenia, improving our understanding of the immunopathogenesis of ASFV.

14.
Poult Sci ; 102(10): 102965, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37562135

RESUMO

Interleukin-9 receptor alpha chain (IL-9Rα) is the ligand-binding subunit of IL-9R that plays roles in IL-9-mediated allergy, inflammation, infection, and tumor immunity. While mammalian IL-9Rαs have been extensively investigated, avian IL-9Rα has not yet been identified and characterized. In this study, we cloned chicken IL-9Rα (chIL-9Rα) and performed a phylogenetic analysis, analyzed its tissue distribution, characterized the expression form of natural chIL-9Rα. Phylogenetic analysis showed that chIL-9Rα has less than 25% amino acid homology with mammalian IL-9Rαs. The chIL-9Rα mRNA was abundantly detected only in heart and mitogen-activated peripheral blood mononuclear cells. Furthermore, 4 monoclonal antibodies (mAbs) against chIL-9Rα were generated using prokaryotic recombinant chIL-9Rα (rchIL-9Rα). Using anti-chIL-9Rα mAbs, natural chIL-9Rα expressed on the splenocytes of chickens was observed by indirect immunofluorescence assay (IFA), and its molecular weight of 51 kDa was identified by Western blotting. Overall, our study reveals for the first time the presence of IL-9Rα in birds, and provides immunological tools for further investigating the roles of chIL-9 in diseases and immunity.


Assuntos
Galinhas , Leucócitos Mononucleares , Animais , Galinhas/genética , Receptores de Interleucina-9/genética , Filogenia , Anticorpos Monoclonais , Interleucina-2 , Mamíferos
15.
Vet Microbiol ; 285: 109847, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37625255

RESUMO

Porcine reproductive and respiratory syndrome virus 1 (PRRSV-1) has been prevalent in more than 20 provinces of China. However, no PRRSV-1-specific vaccine is commercially available in China. To evaluate the feasibility of using a low virulent PRRSV-1 isolate against potential outbreaks caused by virulent Chinese PRRSV-1 isolates, here we evaluated the efficacy of a low virulent PRRSV-1 HLJB1 strain isolated in 2014 as live vaccine against a virulent PRRSV-1 SD1291 strain isolated in 2022. Genome-based phylogenetic analysis showed that both HLJB1 and SD1291 were grouped within BJEU06-1-like isolates. However, they shared only 85.27% genomic similarity. Piglet inoculation and challenge study showed that HLJB1 inoculation could reduce viremia but did not significantly alleviate clinical signs and tissue lesions. Virus neutralization test indicated that HLJB1 inoculation could induce homologous neutralizing antibodies (NAbs) but no heterologous NAbs at 42 dpi. In addition, flow cytometric analyses showed that no memory T follicular helper (Tfh) cells against SD1291 and SD1291-specific IFN-γ secreting cells were induced by HLJB1 pre-inoculation. These results supported that HLJB1 inoculation only provides partial cross-protection against SD1291 infection even though they are clustered within the same PRRSV-1 subgroup, which is closely related to the failure in conferring cross-protective adaptive immune responses.

16.
J Infect Dis ; 203(9): 1240-8, 2011 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-21357942

RESUMO

BACKGROUND: Cigarette smoke (CS) exposure is an epidemiological risk factor for tuberculosis, although the biological basis has not been elucidated. METHODS: We exposed C57BL/6 mice to CS for 14 weeks and examined their ability to control an aerosol infection of Mycobacterium tuberculosis Erdman. RESULTS: CS-exposed mice had more M. tuberculosis isolated from the lungs and spleens after 14 and 30 d, compared with control mice. The CS-exposed mice had worse lung lesions and less lung and splenic macrophages and dendritic cells (DCs) producing interleukin12 and tumor necrosis factor α (TNF-α). There were significantly more interleukin 10-producing macrophages and DCs in the spleens of infected CS-exposed mice than in non-CS-exposed controls. CS-exposed mice also showed a diminished influx of interferon γ-producing and TNF-α-producing CD4(+) and CD8(+) effector and memory T cells into the lungs and spleens. There was a trend toward an increased number of viable intracellular M. tuberculosis in macrophages isolated from humans who smoke compared with nonsmokers. THP-1 human macrophages and primary human alveolar macrophages exposed to CS extract, nicotine, or acrolein showed an increased burden of intracellular M. tuberculosis. CONCLUSION: CS suppresses the protective immune response to M. tuberculosis in mice, human THP-1 cells, and primary human alveolar macrophages.


Assuntos
Suscetibilidade a Doenças , Mycobacterium tuberculosis/imunologia , Fumar/efeitos adversos , Tuberculose/imunologia , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL
17.
Front Immunol ; 13: 889991, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795670

RESUMO

Interleukin-9 (IL-9) is a pleiotropic cytokine that acts on a variety of cells and tissues, and plays roles in inflammation and infection as well as tumor immunity. While mammalian IL-9s have been widely investigated, avian IL-9 has not yet been identified and characterized. In this study, we cloned chicken IL-9 (chIL-9) and performed a phylogenetic analysis, examined its tissue distribution, characterized the biological functions of recombinant chIL-9 (rchIL-9) and the expression form of natural chIL-9. Phylogenetic analysis showed that chIL-9 has less than 30% amino acid identity with mammalian IL-9s. The chIL-9 mRNA can be abundantly detected only in the testis and thymus, and are significantly up-regulated in peripheral blood mononuclear cells (PBMCs) upon mitogen stimulation. The rchIL-9 was produced by prokaryotic and eukaryotic expression systems and showed biological activity in activating monocytes/macrophages to produce inflammatory cytokines and promoting the proliferation of CD3+ T cells. In addition, four monoclonal antibodies (mAbs) and rabbit polyclonal antibody (pAb) against rchIL-9 were generated. Using anti-chIL-9 mAbs and pAb, natural chIL-9 expressed by the activated PBMCs of chickens with a molecular weight of 25kD was identified by Western-blotting. Collectively, our study reveals for the first time the presence of functional IL-9 in birds and lays the ground for further investigating the roles of chIL-9 in diseases and immunity.


Assuntos
Galinhas , Interleucina-9 , Animais , Anticorpos Monoclonais , Citocinas/genética , Interleucina-9/genética , Leucócitos Mononucleares , Mamíferos , Filogenia , Coelhos
18.
Heliyon ; 8(12): e12446, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36593850

RESUMO

Tumor necrosis factor alpha (TNF-α) is an important proinflammatory cytokine and the only known cytokine that can directly kill tumor cells. Unlike mammalian counterparts, chicken TNF-α (chTNF-α) gene has not been identified until very recently due to its high GC content (∼70%) and long GC fragments. The biological functions of this newly-identified cytokine and its detection methods remain to be further investigated. In this study, the extracellular domain of chTNF-α was cloned into prokaryotic vector after codon optimization and recombinant chTNF-α protein was expressed. Subsequently, using recombinant chTNF-ɑ as immunogen, rabbit polyclonal antibody (pAb) and eight clones of mouse anti-chTNF-ɑ monoclonal antibodies (mAbs) were produced, respectively. Both the pAb and mAbs specifically recognized recombinant chTNF-ɑ expressed in E.coli and transfected COS-7 cells. Further mapping the antigenic region showed that all the mAbs recognized a region of amino acid residues 195-285 of chTNF-ɑ. Furthermore, an antigen-capture enzyme-linked immunosorbent assay for the detection of chTNF-ɑ was established using one mAb and the pAb. This assay showed no cross-reactivity with irrelevant Trx-fused antigens and could detect natural chTNF-ɑ expressed by mitogen-activated chicken splenocytes in a dose-dependent manner, with a detection limit of 1 ng/mL. Collectively, our results indicated that the mAbs and pAb against chTNF-α are specific and could be used for the study of the biological functions of chTNF-ɑ and the detection of chTNF-ɑ.

19.
Front Microbiol ; 13: 946463, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898913

RESUMO

Bovine leukemia virus (BLV) is widespread in global cattle populations, but the effects of its infection on milk quantity and quality have not been clearly elucidated in animal models. In this study, 30 healthy first-lactation cows were selected from ≈2,988 cows in a BLV-free farm with the same criteria of parity, age, lactation number, as well as milk yield, SCS, and composition (fat, protein, and lactose). Subsequently, these cows were randomly assigned to the intervention (n = 15) or control (n = 15) group, and reared in different cowsheds. Cows in the intervention group were inoculated with 1 × phosphate-buffered solution (PBS) resuspended in peripheral blood mononuclear cells (PBMC) from a BLV-positive cow, while the controls were inoculated with the inactivated PBMC from the same individual. From June 2016 to July 2021, milk weight (kg) was automatically recorded by milk sensors, and milk SCS and composition were originated from monthly performed dairy herd improvement (DHI) testing. Fluorescence resonance energy transfer (FRET)-qPCR and ELISA showed that cows in the intervention group were successfully infected with BLV, while cows in the control group were free of BLV for the entire period. At 45 days post-inoculation (DPI), the numbers of whole blood cells (WBCs) (P = 0.010), lymphocytes (LYMs) (P = 0.002), and monocytes (MNCs) (P = 0.001) and the expression levels of IFN-γ (P = 0.013), IL-10 (P = 0.031), and IL-12p70 (P = 0.008) increased significantly in the BLV infected cows compared to the non-infected. In lactation numbers 2-4, the intervention group had significantly higher overall milk yield (P < 0.001), fat (P = 0.031), and protein (P = 0.050) than the control group, while milk SCS (P = 0.038) and lactose (P = 0.036) decreased significantly. Further analysis indicated that BLV infection was associated with increased milk yield at each lactation stage in lactation numbers 3-4 (P = 0.021 or P < 0.001), but not with SCS and milk composition. Together, this 4-year longitudinal study revealed that artificial inoculation of BLV increased the milk yield in cows in this BLV challenge model.

20.
Viruses ; 14(6)2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35746813

RESUMO

The CD69 molecule, as an early activation marker of lymphocytes, is often used to assess the activation of cellular immunity. However, for pigs, an anti-pig CD69 antibody is not yet available for this purpose after infection or vaccination. In this study, a monoclonal antibody (mAb) against pig CD69 was produced by peptide immunization and hybridoma technique. One mAb (5F12) showed good reactivity with pig CD69 that was expressed in transfected-HEK-293T cells and on mitogen-activated porcine peripheral blood mononuclear cells (PBMCs) by indirect immunofluorescence assay and flow cytometry. This mAb did not cross-react with activated lymphocytes from mouse, bovine, and chicken. Epitope mapping showed that the epitope recognized by this mAb was located at amino acid residues 147-161 of pig CD69. By conjugating with fluorochrome, this mAb was used to detect the early activation of lymphocytes in PRRSV- and ASFV-infected pigs by flow cytometry. The results showed that PRRSV infection induced the dominant activation of CD4 T cells in mediastinal lymph nodes and CD8 T cells in the spleen at 14 days post-infection, in terms of CD69 expression. In an experiment on ASFV infection, we found that ASFV infection resulted in the early activation of NK cells, B cells, and distinct T cell subsets with variable magnitude in PBMCs, spleen, and submandibular lymph nodes. Our study revealed an early event of lymphocyte and T cell activation after PRRSV and ASFV infections and provides an important immunological tool for the in-depth analysis of cellular immune response in pigs after infection or vaccination.


Assuntos
Síndrome Respiratória e Reprodutiva Suína , Vírus da Síndrome Respiratória e Reprodutiva Suína , Animais , Anticorpos Monoclonais/metabolismo , Bovinos , Leucócitos Mononucleares , Ativação Linfocitária , Camundongos , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA