Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Aerosol Sci ; 162: 105943, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35034977

RESUMO

Social distance will remain the key measure to contain COVID-19 before the global widespread vaccination coverage expected in 2024. Containing the virus outbreak in the office is prioritised to relieve socio-economic burdens caused by COVID-19 and potential pandemics in the future. However, "what is the transmissible distance of SARS-CoV-2" and "what are the appropriate ventilation rates in the office" have been under debate. Without quantitative evaluation of the infection risk, some studies challenged the current social distance policies of 1-2 m adopted by most countries and suggested that longer social distance rule is required as the maximum transmission distance of cough ejected droplets could reach 3-10 m. With the emergence of virus variants such as the Delta variant, the applicability of previous social distance rules are also in doubt. To address the above problem, this study conducted transient Computational Fluid Dynamics (CFD) simulations to evaluate the infection risks under calm and wind scenarios. The calculated Social Distance Index (SDI) indicates that lower humidity leads to a higher infection risk due to weaker evaporation. The infection risk in office was found more sensitive to social distance than ventilation rate. In standard ventilation conditions, social distance of 1.7 m-1.8 m is sufficient distances to reach low probability of infection (PI) target in a calm scenario when coughing is the dominant transmission route. However in the wind scenario (0.25 m/s indoor wind), distance of 2.8 m is required to contain the wild virus type and 3 m is insufficient to contain the spread of the Delta variant. The numerical methods developed in this study provide a framework to evaluate the COVID-19 infection risk in indoor environment. The predicted PI will be beneficial for governments and regulators to make appropriate social-distance and ventilation rules in the office.

2.
J Aerosol Sci ; 154: 105745, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33456070

RESUMO

Inhaled viral droplets may immediately be expelled and cause an escalating re-transmission. Differences in the deposition location of inhaled viral droplets may have a direct impact on the probability of virus expelling. This study develops a numerical model to estimate the region-specific deposition fractions for inhalable droplets (1-50 µ m) in respiratory airways. The results identified a higher deposition fraction in the upper airways than the lower airways. Particularly for droplets larger than 10 µ m, the relatively high deposition fraction in the oral/laryngeal combined region warns of its easy transmission through casual talking/coughing. Moreover, considering droplet sizes' effect on virus loading capacity, we built a correlation model to quantify the potential of virus expelling hazards, which suggests an amplified cascade effect on virus transmission on top of the existing transmission mechanism. It therefore highlights the importance of considering the instant expelling possibilities from inhaled droplets, and also implies potentials in restricting a rapid secondary transmission by measures that can lower down droplet deposition in the upper airways.

3.
Part Fibre Toxicol ; 16(1): 6, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30683122

RESUMO

BACKGROUND: Nose-to-brain transport of airborne ultrafine particles (UFPs) via the olfactory pathway has been verified as a possible route for particle translocation into the brain. The exact relationship between increased airborne toxicant exposure and neurological deterioration in the human central nervous system, is still unclear. However, the nasal olfactory is undoubtedly a critical junction where the time course and toxicant dose dependency might be inferred. METHOD: Computational fluid-particle dynamics modeling of inhaled nanoparticles (1 to 100 nm) under low to moderate breathing conditions (5 to 14 L/min - human; and 0.14 to 0.40 L/min - rat) were performed in physiologically realistic human and rat nasal airways. The simulation emphasized olfactory deposition, and variations in airflow and particle flux caused by the inter-species airway geometry differences. Empirical equations were developed to predict regional deposition rates of inhaled nanoparticles on human and rat olfactory mucosa in sedentary breathing. Considering, breathing and geometric differences, quantified correlations between human and the rat olfactory deposition dose against a variety of metrics were proposed. RESULTS: Regional deposition of nanoparticles in human and the rat olfactory was extremely low, with the highest deposition (< 3.5 and 8.1%) occurring for high diffusivity particles of 1.5 nm and 5 nm, respectively. Due to significant filtering of extremely small particles (< 2 nm) by abrupt sharp turns at front of the rat nose, only small fractions of the inhaled nanoparticles (in this range) reached rat olfactory than that in human (1.25 to 45%); however, for larger sizes (> 3 nm), significantly higher percentage of the inhaled nanoparticles reached rat nasal olfactory than that in human (2 to 32 folds). Taking into account the physical and geometric features between human and rat, the total deposition rate (#/min) and deposition rate per unit surface area (#/min/mm2) were comparable for particles> 3 nm. However, when body mass was considered, the normalized deposition rate (#/min/kg) in the rat olfactory region exceeded that in the human. Nanoparticles < 1.5 nm were filtered out by rat anterior nasal cavity, and therefore deposition in human olfactory region exceeded that in the rat model. CONCLUSION: Regional deposition dose of inhaled nanoparticles in a human and rat olfactory region was governed by particle size and the breathing rate. Interspecies correlation was determined by combining the effect of deposition dosage, physical\geometric features, and genetic differences. Developed empirical equations provided a tool to quantify inhaled nanoparticle dose in human and rat nasal olfactory regions, which lay the ground work for comprehensive interspecies correlation between the two species. Furthermore, this study contributes to the fields in toxicology, i.e., neurotoxicity evaluation and risk assessment of UFPs, in long-term and low-dose inhalation exposure scenarios.


Assuntos
Exposição por Inalação/análise , Modelos Biológicos , Nanopartículas/metabolismo , Bulbo Olfatório/metabolismo , Mucosa Olfatória/metabolismo , Animais , Biologia Computacional , Relação Dose-Resposta a Droga , Humanos , Tamanho da Partícula , Ratos , Especificidade da Espécie , Distribuição Tecidual
4.
Inhal Toxicol ; 31(6): 224-235, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31431101

RESUMO

Aim: Inhaled allergens from house dust mite (HDM) are a major source of allergic disease such as allergic rhinitis and asthma. It has been a challenge to properly evaluate health risks caused by HDM related allergens including mite bodies, eggs and fecal pellets. This paper presents a numerical study on particle deposition of dust mite allergens in a human nasal cavity. Materials and methods: A realistic nasal cavity model was reconstructed from CT scans and a Computational Fluid Dynamics analysis of steady airflow was simulated. The discrete phase model was used to trace particle trajectories of three dust mite related particles. Results: The flow and particle model were validated by comparing with nasal resistance measurement and previous literature respectively. Aerodynamic characteristics and deposition of dust mite allergens in the nasal cavity were analyzed under different breathing conditions including rest and exercising conditions. Conclusions: The numerical results revealed the roles of different nasal cavity regions in filtering various types of dust mite allergens with consideration of breathing conditions.


Assuntos
Alérgenos , Antígenos de Dermatophagoides , Modelos Anatômicos , Modelos Teóricos , Cavidade Nasal/fisiologia , Adulto , Animais , Feminino , Humanos , Hidrodinâmica , Exposição por Inalação , Cavidade Nasal/anatomia & histologia , Pressão
5.
J Occup Environ Hyg ; 16(4): 273-285, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30668285

RESUMO

Understanding the inhalation, transport and deposition of smoke particles during fire missions are important to evaluating the health risks for firefighters. In this study, measurements from Underwriters Laboratories' large-scale fire experiments on smoke particle size distribution and concentration in three residential fire scenes were incorporated into models to investigate the fate of inhaled toxic ultrafine particulates in a realistic firefighter nasal cavity model. Deposition equations were developed, and the actual particle dosimetry (in mass, number and surface area) was evaluated. A strong monotonic growth of nasal airway dosages of simulated smoke particles was identified for airflow rates and fire duration across all simulated residential fire scene conditions. Even though the "number" dosage of arsenic in the limited ventilation living room fire was similar to the "number" dosage of chromium in the living room, particle mass and surface area dosages simulated in the limited living room were 90-200 fold higher than that in the ventilated living room. These were also confirmed when comparing the dosimetry in the living room and the kitchen. This phenomenon implied that particles with larger size were the dominant factors in mass and surface area dosages. Firefighters should not remove the self-contained breathing apparatus (SCBA) during fire suppression and overhaul operations, especially in smoldering fires with limited ventilation.


Assuntos
Bombeiros , Exposição por Inalação/análise , Material Particulado/análise , Fumaça/análise , Adulto , Poluentes Ocupacionais do Ar/análise , Arsênio , Cromo , Simulação por Computador , Humanos , Masculino , Cavidade Nasal , Exposição Ocupacional/análise , Tamanho da Partícula
6.
Proc Biol Sci ; 285(1874)2018 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-29540519

RESUMO

The elaborate bipectinate antennae of male moths are thought to increase their sensitivity to female sex pheromones, and so should be favoured by selection. Yet simple filamentous antennae are the most common structure among moths. The stereotypic arrangements of scales on the surface of antennae may resolve this paradox. We use computational fluid dynamics techniques to model how scales on the filamentous antennae of moths affect the passage of different particles in the airflow across the flagellum in both small and large moths. We found that the scales provide an effective solution to improve the efficacy of filamentous antennae, by increasing the concentration of nanoparticles, which resemble pheromones, around the antennae. The smaller moths have a greater increase in antennal efficiency than larger moths. The scales also divert microparticles, which resemble dust, away from the antennal surface, thereby reducing contamination. The positive correlations between antennal scale angles and sensilla number across Heliozelidae moths are consistent with the predictions of our model.


Assuntos
Comunicação Animal , Antenas de Artrópodes/fisiologia , Mariposas/fisiologia , Feromônios/análise , Sensilas/citologia , Animais , Biologia Computacional , Feminino , Hidrodinâmica , Masculino , Modelos Teóricos , Nanopartículas/análise
7.
Inhal Toxicol ; 30(1): 29-39, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29488421

RESUMO

Rats have been widely used as surrogates for evaluating the health effects of inhaled airborne particulate matter. To provide a thorough understanding of particle transport and deposition mechanisms in the rat nasal airway, this article presents a computational fluid dynamics (CFD) study of particle exposure in a realistic rat nasal passage under a resting flow condition. Particles covering a diameter range from 1 nm to 4 µm were passively released in front of the rat's breathing zone, and the Lagrangian particle tracking approach was used to calculate individual particle trajectories. Detailed particle deposition analysis shows the deposition of inertial particles >2 µm is high in the rat nasal vestibule and more than 70% of all inhaled inertial particles were trapped in this region. While for diffusive nanoparticles, the vestibule filtration effect is reduced, only less than 60% of inhaled nanoparticles were blocked by the anterior nasal structures. The particle exposure in the olfactory region only shows notable deposition for diffusive nanoparticles, which peaks at 9.4% for 5 nm particles. Despite the olfactory deposition remains at a low level, the ratio between the olfactory and the main passage is kept around 30-40% for 10-800 nm particles, which indicates a particle-size-independent distribution pattern in the main nasal passage and olfactory. This study provides a deep understanding of particles deposition features in a rat nasal passage, and the research findings can aid toxicologist in inter-species exposure-response extrapolation study.


Assuntos
Modelos Anatômicos , Cavidade Nasal/metabolismo , Material Particulado/farmacocinética , Administração por Inalação , Animais , Ratos Sprague-Dawley
8.
Build Environ ; 128: 68-76, 2018 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32287977

RESUMO

This study employed a multi-component Eulerian-Lagrangian approach to model the evaporation and dispersion of cough droplets in quiescent air. The approach is featured with a continuity equation being explicitly solved for water vapor, which allows comprehensively considering the effects of inhomogeneous humidity field on droplets evaporation and movement. The computational fluid dynamics (CFD) computations based on the approach achieved a satisfactory agreement with the theoretical models reported in the literature. The results demonstrated that the evaporation-generated vapor and super-saturated wet air exhaled from the respiratory tracks forms a "vapor plume" in front of the respiratory track opening, which, despite the short life time, significantly impedes the evaporation of the droplets captured in it. The study also revealed that due to the droplet size reduction induced by evaporation, both the number density of airborne droplets and mass concentration of inhalable pathogens remarkably increased, which can result in a higher risk of infection. Parametric studies were finally conducted to evaluate the factors affecting droplet evaporation. SUMMARY: The study demonstrated the importance of considering inhomogeneous humidity field when modelling the evaporation and dispersion of cough droplets. The multi-component Eulerian-Lagrangian model presented in this study provides a comprehensive approach to address different influential factors in a wide parametric range, which will enhance the assessment of the health risks associated with droplet exposure.

9.
Pharm Res ; 35(1): 5, 2017 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-29288465

RESUMO

PURPOSE: Nose-to-brain drug administration along the olfactory and trigeminal nerve pathways offers an alternative route for the treatment of central nervous system (CNS) disorders. The characterization of particle deposition remains difficult to achieve in experiments. Alternative numerical approach is applied to identify suitable aerosol particle size with maximized inhaled doses. METHODS: This study numerically compared the drug delivery efficiency in a realistic human nasal cavity between two aerosol drug administration systems targeting the olfactory region: the aerosol mask system and the breath-powered bi-directional system. Steady inhalation and exhalation flow rates were applied to both delivery systems. The discrete phase particle tracking method was employed to capture the aerosol drug transport and deposition behaviours in the nasal cavity. Both overall and regional deposition characteristics were analysed in detail. RESULTS: The results demonstrated the breath-powered drug delivery approach can produce superior olfactory deposition with peaking olfactory deposition fractions for diffusive 1 nm particles and inertial 10 µm. While for particles in the range of 10 nm to 2 µm, no significant olfactory deposition can be found, indicating the therapeutic agents should avoid this size range when targeting the olfactory deposition. CONCLUSIONS: The breath-powered bi-directional aerosol delivery approach shows better drug delivery performance globally and locally, and improved drug administration doses can be achieved in targeted olfactory region.


Assuntos
Encéfalo/efeitos dos fármacos , Fármacos do Sistema Nervoso Central/administração & dosagem , Doenças do Sistema Nervoso Central/tratamento farmacológico , Modelos Biológicos , Sprays Nasais , Nariz/efeitos dos fármacos , Administração por Inalação , Administração Intranasal , Fármacos do Sistema Nervoso Central/química , Sistemas de Liberação de Medicamentos/métodos , Humanos , Modelos Anatômicos , Tamanho da Partícula
10.
Part Fibre Toxicol ; 14(1): 24, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28701167

RESUMO

BACKGROUNDS: Exposure to nanoparticles in the workplace is a health concern to occupational workers with increased risk of developing respiratory, cardiovascular, and neurological disorders. Based on animal inhalation study and human lung tumor risk extrapolation, current authoritative recommendations on exposure limits are either on total mass or number concentrations. Effects of particle size distribution and the implication to regional airway dosages are not elaborated. METHODS: Real time production of particle concentration and size distribution in the range from 5.52 to 98.2 nm were recorded in a wire-cut electrical discharge machine shop (WEDM) during a typical working day. Under the realistic exposure condition, human inhalation simulations were performed in a physiologically realistic nasal and upper airway replica. The combined experimental and numerical study is the first to establish a realistic exposure condition, and under which, detailed dose metric studies can be performed. In addition to mass concentration guided exposure limit, inhalation risks to nano-pollutant were reexamined accounting for the actual particle size distribution and deposition statistics. Detailed dosimetries of the inhaled nano-pollutants in human nasal and upper airways with respect to particle number, mass and surface area were discussed, and empirical equations were developed. RESULTS: An astonishing enhancement of human airway dosages were detected by current combined experimental and numerical study in the WEDM machine shop. Up to 33 folds in mass, 27 folds in surface area and 8 folds in number dosages were detected during working hours in comparison to the background dosimetry measured at midnight. The real time particle concentration measurement showed substantial emission of nano-pollutants by WEDM machining activity, and the combined experimental and numerical study provided extraordinary details on human inhalation dosimetry. It was found out that human inhalation dosimetry was extremely sensitive to real time particle concentration and size distribution. Averaged particle concentration over 24-h period will inevitably misrepresent the sensible information critical for realistic inhalation risk assessment. CONCLUSIONS: Particle size distribution carries very important information in determining human airway dosimetry. A pure number or mass concentration recommendation on the exposure limit at workplace is insufficient. A particle size distribution, together with the deposition equations, is critical to recognize the actual exposure risks. In addition, human airway dosimetry in number, mass and surface area varies significantly. A complete inhalation risk assessment requires the knowledge of toxicity mechanisms in response to each individual metric. Further improvements in these areas are needed.


Assuntos
Poluentes Ocupacionais do Ar/efeitos adversos , Simulação por Computador , Equipamentos e Provisões Elétricas/efeitos adversos , Exposição por Inalação/efeitos adversos , Instalações Industriais e de Manufatura , Nanopartículas/efeitos adversos , Exposição Ocupacional/efeitos adversos , Saúde Ocupacional , Sistema Respiratório/efeitos dos fármacos , Humanos , Hidrodinâmica , Modelos Anatômicos , Análise Numérica Assistida por Computador , Tamanho da Partícula , Sistema Respiratório/anatomia & histologia , Sistema Respiratório/metabolismo , Medição de Risco , Fatores de Tempo , Distribuição Tecidual
11.
Build Environ ; 121: 79-92, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32287972

RESUMO

An urgent demand of assessing passengers' exposure risks in airliner cabins was raised as commercial airliners are one of the major media that carrying and transmitting infectious disease worldwide. In this study, simulations were conducted using a Boeing 737 cabin model to study the transport characteristics of airborne droplets and the associated infection risks of passengers. The numerical results of the airflow field were firstly compared against the experimental data in the literature to validate the reliability of the simulations. Airborne droplets were assumed to be released by passengers through coughing and their transport characteristics were modelled using the Lagrangian approach. Numerical results found that the particle travel distance was very sensitive to the release locations, and the impact was more significant along the longitudinal and horizontal directions. Particles released by passengers sitting next to the windows could travel much further than the others. A quantifiable approach was then applied to assess the individual infection risks of passengers. The key particle transport information such as the particle residence time yielded from the Lagrangian tracking process was extracted and integrated into the Wells-Riley equation to estimate the risks of infection. Compared to the Eulerian-based approach, the Lagrangian-based approach presented in this study is more robust as it addresses both the particle concentration and particle residence time in the breathing zone of every individual passenger.

12.
Ann Occup Hyg ; 60(6): 731-47, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27074799

RESUMO

Welding fume is a complex mixture containing ultra-fine particles in the nanometer range. Rather than being in the form of a singular sphere, due to the high particle concentration, welding fume particles agglomerate into long straight chains, branches, or other forms of compact shapes. Understanding the transport and deposition of these nano-agglomerates in human respiratory systems is of great interest as welding fumes are a known health hazard. The neurotoxin manganese (Mn) is a common element in welding fumes. Particulate Mn, either as soluble salts or oxides, that has deposited on the olfactory mucosa in human nasal airway is transported along the olfactory nerve to the olfactory bulb within the brain. If this Mn is further transported to the basal ganglia of the brain, it could accumulate at the part of the brain that is the focal point of its neurotoxicity. Accounting for various dynamic shape factors due to particle agglomeration, the current computational study is focused on the exposure route, the deposition pattern, and the deposition efficiency of the inhaled welding fume particles in a realistic human nasal cavity. Particular attention is given to the deposition pattern and deposition efficiency of inhaled welding fume agglomerates in the nasal olfactory region. For particles in the nanoscale, molecular diffusion is the dominant transport mechanism. Therefore, Brownian diffusion, hydrodynamic drag, Saffman lift force, and gravitational force are included in the model study. The deposition efficiencies for single spherical particles, two kinds of agglomerates of primary particles, two-dimensional planar and straight chains, are investigated for a range of primary particle sizes and a range of number of primary particles per agglomerate. A small fraction of the inhaled welding fume agglomerates is deposited on the olfactory mucosa, approximately in the range 0.1-1%, and depends on particle size and morphology. The strong size dependence of the deposition in olfactory mucosa on particle size implies that the occupation deposition of welding fume manganese can be expected to vary with welding method.


Assuntos
Poluentes Ocupacionais do Ar/toxicidade , Nanopartículas/análise , Absorção Nasal , Soldagem/métodos , Humanos , Exposição por Inalação , Masculino , Manganês/análise , Manganês/toxicidade , Modelos Estatísticos , Nanopartículas/toxicidade , Exposição Ocupacional/efeitos adversos , Tamanho da Partícula , Sistema Respiratório/química , Sistema Respiratório/patologia
13.
Inhal Toxicol ; 27(13): 694-705, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26406158

RESUMO

Micron-sized particle deposition in anatomically realistic models of a rat and human nasal cavity was numerically investigated. A steady laminar inhalation flow rate was applied and particles were released from the outside air. Particles showing equivalent total particle deposition fractions were classified into low, medium and high inertial particle. Typical particle sizes are 2.5, 9 and 20 µm for the human model and 1, 2 and 3 µm for the rat model, respectively. Using a surface-mapping technique the 3D nasal cavity surface was "unwrapped" into a 2D domain and the particle deposition locations were plotted for complete visual coverage of the domain surface. The total surface area comparison showed that the surface area of the human nasal model was about ten times the size of the rat model. In contrast, the regional surface area percentage analysis revealed the olfactory region of the rat model was significantly larger than all other regions making up ∼55.6% of the total surface area, while that of the human nasal model only occupying 10.5%. Flow pattern comparisons showed rapid airflow acceleration was found at the nasopharynx region and the nostril region for the human and rat model, respectively. For the human model, the main passage is the major deposition region for micro-particles. While for the rat model, it is the vestibule. Through comparing the regional deposition flux between human and rat models, this study can contribute towards better extrapolation approach of inhalation exposure data between inter-subject species.


Assuntos
Modelos Biológicos , Cavidade Nasal/fisiologia , Administração por Inalação , Animais , Pesos e Medidas Corporais , Humanos , Masculino , Pessoa de Meia-Idade , Tamanho da Partícula , Ratos Sprague-Dawley , Fenômenos Fisiológicos Respiratórios
14.
Comput Biol Med ; 141: 105129, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34915333

RESUMO

In this study, we present a detailed flow analysis using an anatomically accurate rat nasal cavity model, in which the anatomy and physiology of the nasal airway was thoroughly examined. Special efforts were given to the swirling flow structures in the nasal vestibule (anterior section of the nose, lined by squamous epithelium), fractional flow patterns in the olfactory (posterior superior section of the rat nose, lined by olfactory epithelium), and a designated method to precisely quantify flow apportionment in the olfactory region was developed. Results revealed distinct inspiratory flow patterns in the anterior vestibule region, where the accelerated airflow undergoes two sharp turns as traveling through the tortuous airway, making a route in a shape of 8. Besides this, exceptionally large flow apportionment was observed at the interface of the olfactory recess, which can be as much as 15 times greater than that in the human nose. The thorough understanding of the airflow dynamics in the rat nasal cavity is necessary to avoid potential misinterpretation of rat-derived inhalation toxicity results. Research findings are expected to play a fundamental role in developing unbiased rat to human interspecies data extrapolation schemes.


Assuntos
Cavidade Nasal , Mucosa Olfatória , Administração por Inalação , Animais , Cavidade Nasal/fisiologia , Nariz/fisiologia , Mucosa Olfatória/fisiologia , Ratos , Olfato/fisiologia
15.
Comput Biol Med ; 141: 105150, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34942396

RESUMO

Nonhuman primates are occasionally used as laboratory models for sophisticated medical research as they bear the closest resemblance to humans in morphometry and physiological functions. A range of nonhuman primate species have been employed in the inhalation toxicity, nasal drug delivery and respiratory viral infection studies, and they provided valuable insight to disease pathogenesis while other laboratory animals such as rodents cannot recapitulate due to the lesser degree of similarity in metabolism, anatomy and cellular response to that of humans. It is anticipated that nonhuman primate models of respiratory diseases will continue to be instrumental for translating biomedical research for improvement of human health, and the confidence in laboratory data extrapolation between species will play a pivotal role. From the morphometry and flow dynamics point of view, this study performed a detailed comparative analysis between human and a cynomolgus monkey nasal airway, with intention to provide high-fidelity qualitative and quantitative linkage between the two species for more effective laboratory data extrapolation. The study revealed that cynomolgus monkey could be a good human surrogate in nasal inhalation studies; however, care should be given for interspecies data extrapolation as subtle differences in anatomy and airflow dynamics were present between the two species.


Assuntos
Cavidade Nasal , Administração por Inalação , Animais , Humanos , Macaca fascicularis , Cavidade Nasal/fisiologia
16.
Sci Total Environ ; 853: 158770, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36108859

RESUMO

Inhaled particulate matter is associated with nasal diseases such as allergic rhinitis, rhinosinusitis and neural disorders. Its health risks on humans are usually evaluated by measurements on monkeys as they share close phylogenetic relationship. However, the reliability of cross-species toxicological extrapolation is in doubt due to physiological and anatomical variations, which greatly undermine the reliability of these expensive human surrogate models. This study numerically investigated in-depth microparticle transport and deposition characteristics on human and monkey (Macaca fuscata) nasal cavities that were reconstructed from CT-images. Deposition characteristics of 1-30µm particles were investigated under resting and active breathing conditions. Similar trends were observed for total deposition efficiencies and a single correlation using Stokes Number was fitted for both species and both breathing conditions, which is convenient for monkey-human extrapolation. Regional deposition patterns were carefully compared using the surface mapping technique. Deposition patterns of low, medium and high inertial particles, classified based on their total deposition efficiencies, were further analyzed in the 3D view and the mapped 2D view, which allows locating particle depositions on specific nasal regions. According to the particle intensity contours and regional deposition profiles, the major differences were observed at the vestibule and the floor of the nasal cavity, where higher deposition intensities of medium and high inertial particles were shown in the monkey case than the human case. Comparisons of airflow streamlines indicated that the cross-species variations of microparticle deposition patterns are mainly contributed by two factors. First, the more oblique directions of monkey nostrils result in a sharper airflow turn in the vestibule region. Second, the monkey's relatively narrower nasal valves lead to higher impaction of medium and high inertial particles on the nasal cavity floor. The methods and findings in this study would contribute to an improved cross-species toxicological extrapolation between human and monkey nasal cavities.


Assuntos
Cavidade Nasal , Material Particulado , Animais , Humanos , Cavidade Nasal/fisiologia , Tamanho da Partícula , Administração por Inalação , Haplorrinos , Filogenia , Reprodutibilidade dos Testes , Simulação por Computador
17.
Int J Numer Method Biomed Eng ; 38(3): e3565, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34913265

RESUMO

As a primary determinant of nasal physiological functions, the nasal morphology and its effects on the airflow dynamics have been extensively studied in literature. However, gross flow features reported in literature are mostly obtained from subjects at similar ages, while studies focusing on nasal subjects with distinct age differences are significantly less. To advance current understandings of nasal airflow dynamics in the context of age diversity, this study employed three anatomically accurate nasal cavity models with distinct age features (5-, 24- and 77-year-old models) and numerically compared the physiological nasal airflow fields within these nasal cavity models. To demonstrate the validity of the present numerical models, in vivo rhinomanometry measurement was conducted on the 24-year-old female nasal model, and key anatomical features and pressure-flow curves of all three models were compared with models with similar age features in literature work. Apart from results comparison based on conventional velocity flow fields and wall shear stress distributions, a method for quantifying flow partitions in confined airway spaces was developed to reveal the proportions of fractional flow that enters the olfactory region. Our results revealed dramatic intersubject discrepancies between considered nasal cavity models, especially for the fractional flow that enters the olfactory region. Specifically, the 5-year-old girl nasal model received the highest proportion of fractional flow, which accounts for 13.3% ~ 15% of overall inhalation flow rates under different activity levels. For the 24-year-old female model, on the contrary, the olfactory fractional flow was dramatically reduced (with a local to overall percentage around 4.3%-7.7%). Finally, for the elderly subject-77-year-old male model, minimum level of olfactory flux was observed with a local to overall percentage ranging between 3.1% and 4.9% for considered wide range of inhalation flow rates. Therefore, the local flow intersubject variation can reach nearly fourfold. The vast local flow difference is mainly due to the inherent anatomical features (e.g., immature nasal turbinate structure in the child model, the partial narrowing superior nasal valve in the elder model). The results may further lead to discrepant health effects associated with inhalation exposure to airborne particles.


Assuntos
Cavidade Nasal , Conchas Nasais , Adulto , Idoso , Criança , Pré-Escolar , Simulação por Computador , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Cavidade Nasal/fisiologia , Fenômenos Fisiológicos Respiratórios , Adulto Jovem
18.
Comput Methods Biomech Biomed Engin ; 25(13): 1449-1458, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34913791

RESUMO

OBJECTIVE: To analyze the effect of different endoscopic endonasal approaches (EEAs) on nasal airflow and heating and humidification in patients with pituitary adenoma (PA) by computational fluid dynamics (CFD). METHODS: A three-dimensional pre-surgical model (Pre) of the nasal cavity and 6 that were post-EEA surgery were created from computed tomography scans as follows: small posterior septectomy (0.5 cm, sPS), middle posterior septectomy (1.5 cm, mPS), large posterior septectomy (2.5 cm, lPS), and sPS with middle turbinate resection (sPS-MTR), mPS-MTR, and lPS-MTR. Simulations were performed by CFD to compare the changes in different models. RESULTS: The temperature in the nasal vestibule rose more rapidly than in other parts of the nasal cavities in all models. There were no apparent differences in temperature and humidity among the models in sections anterior to the middle turbinate head (C6 section). MTR significantly influenced airflow distribution between the bilateral nasal cavities and the different parts of the nasal cavity, while changes in temperature and humidity in each section were mainly affected by MTR. The temperature and humidity of the choana and nasopharynx of each postoperative model were significantly different from those of the preoperative model and the change in values significantly correlated with the surface-to-volume ratio (SVR) of the airway. CONCLUSIONS: Changes due to the different nasal structures caused different effects on nasal function following the use of EEA surgery for the treatment of PA. CFD provided a new approach to assess nasal function, promising to provide patients with individualized preoperative functional assessment and surgical planning.


Assuntos
Obstrução Nasal , Neoplasias Hipofisárias , Simulação por Computador , Humanos , Hidrodinâmica , Lipopolissacarídeos , Cavidade Nasal/diagnóstico por imagem , Cavidade Nasal/cirurgia , Obstrução Nasal/cirurgia , Neoplasias Hipofisárias/diagnóstico por imagem , Neoplasias Hipofisárias/cirurgia , Conchas Nasais/cirurgia
19.
NanoImpact ; 22: 100322, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-35559979

RESUMO

Olfactory pathway as a viable route for brain uptake of environmental pollutants has been hypothesized in past decade. In such a hypothesis, subclinical low-dose exposure and chronic brain accumulation of exogenous airborne agents are critical to define neurodegenerations, however the information is extremely lacking. Advances in granular measurement of air pollutants, real-time personal exposure monitoring and big data analytics have opened-up an unprecedented opportunity to enable researchers conduct longitudinal investigation and potentially link the external environment condition to risks of human developing neurodegenerative diseases in a foreseeable future. Detailed case studies are provided in this work that illustrate the quantification of human brain accumulation of ultrafine particles (UFPs) from exposure, surface deposition, and pathway penetration via the transport route of nasal olfactory in prolonged timespans. The study links the individual components along the olfactory pathway, showcases the available research capacity, and pinpoints the critical areas of research need in environmental, toxicological and epidemiological studies, significant to a joint effort to bring together an interdisciplinary solution to uncover the insight of time course and dose dependency between environmental exposure and risk of developing neurodegenerative diseases in a foreseeable future. It should be noted that current study assumes that nanoparticle penetration along the olfactory pathway is unidirectional and follows the rate observed in the rodent study. Tissue responses in determining the penetration and retention corresponding to size and composition of the inhaled nanoparticles are not considered.


Assuntos
Condutos Olfatórios , Material Particulado , Encéfalo/metabolismo , Humanos , Tamanho da Partícula , Material Particulado/metabolismo , Projetos Piloto
20.
Clin Biomech (Bristol, Avon) ; 81: 105237, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33272646

RESUMO

BACKGROUND: The aim of this study was to use computational fluid dynamics (CFD) to investigate the effects on nasal heat exchange and humidification of two different surgical techniques for reducing the inferior turbinate under different environmental conditions. METHODS: Virtual surgery using two techniques of turbinate reduction was performed in eight nasal airway obstruction patients. Bilateral nasal airway models for each patient were compared: 1) Pre-operative 2) Post inferior turbinoplasty 3) Post total inferior turbinate resection (ITR). Two representative healthy models were included. Three different environmental conditions were investigated 1) ambient air 2) cold, dry air 3) hot, humid air. CFD modelling of airflow and conditioning was performed under steady-state, laminar, inspiratory conditions. FINDINGS: Nasal conditioning is significantly altered following inferior turbinate reduction surgery, particularly with ITR under cold, dry inspired air (CDA). The degree of impairment is minor under the simulated range of environmental conditions (temperature = 12-40 °C; relative humidity = 13-80%). Streams of significantly colder air are found in the nasopharynx and more prevalent under CDA in ITR. These are related to high velocity flow streams, which remain cool in their centre throughout the widened inferior nasal cavity. INTERPRETATION: Reduced air-mucosal heat exchange and moisture carrying capacity occurs under cooler temperatures in patients following inferior turbinate surgery. The clinical impact in extremely cold and dry conditions in groups with poor baseline respiratory function, respiratory illness, or endurance athletes is of special interest.


Assuntos
Ar , Simulação por Computador , Hidrodinâmica , Cavidade Nasal/fisiologia , Conchas Nasais/cirurgia , Adulto , Feminino , Humanos , Masculino , Obstrução Nasal/cirurgia , Respiração , Temperatura , Conchas Nasais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA