Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 10(16): eadj4079, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38630827

RESUMO

Ceramic materials with high strength and chemical inertness are widely used as engineering materials. However, the brittle nature limits their applications as fracture occurs before the onset of plastic yielding. There has been limited success despite extensive efforts to enhance the deformability of ceramics. Here we report a method for enhancing the room temperature plastic deformability of ceramics by artificially introducing abundant defects into the materials via preloading at elevated temperatures. After the preloading treatment, single crystal (SC) TiO2 exhibited a substantial increase in deformability, achieving 10% strain at room temperature. SC α-Al2O3 also showed plastic deformability, 6 to 7.5% strain, by using the preloading strategy. These preinjected defects enabled the plastic deformation process of the ceramics at room temperature. These findings suggest a great potential for defect engineering in achieving plasticity in ceramics at room temperature.

2.
Science ; 384(6695): 579-584, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38696580

RESUMO

Fractional quantum Hall (FQH) states are known for their robust topological order and possess properties that are appealing for applications in fault-tolerant quantum computing. An engineered quantum platform would provide opportunities to operate FQH states without an external magnetic field and enhance local and coherent manipulation of these exotic states. We demonstrate a lattice version of photon FQH states using a programmable on-chip platform based on photon blockade and engineering gauge fields on a two-dimensional circuit quantum electrodynamics system. We observe the effective photon Lorentz force and butterfly spectrum in the artificial gauge field, a prerequisite for FQH states. After adiabatic assembly of Laughlin FQH wave function of 1/2 filling factor from localized photons, we observe strong density correlation and chiral topological flow among the FQH photons. We then verify the unique features of FQH states in response to external fields, including the incompressibility of generating quasiparticles and the smoking-gun signature of fractional quantum Hall conductivity. Our work illustrates a route to the creation and manipulation of novel strongly correlated topological quantum matter composed of photons and opens up possibilities for fault-tolerant quantum information devices.

3.
Nat Commun ; 15(1): 5122, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38879562

RESUMO

Light-weight, high-strength, aluminum (Al) alloys have widespread industrial applications. However, most commercially available high-strength Al alloys, like AA 7075, are not suitable for additive manufacturing due to their high susceptibility to solidification cracking. In this work, a custom Al alloy Al92Ti2Fe2Co2Ni2 is fabricated by selective laser melting. Heterogeneous nanoscale medium-entropy intermetallic lamella form in the as-printed Al alloy. Macroscale compression tests reveal a combination of high strength, over 700 MPa, and prominent plastic deformability. Micropillar compression tests display significant back stress in all regions, and certain regions have flow stresses exceeding 900 MPa. Post-deformation analyses reveal that, in addition to abundant dislocation activities in Al matrix, complex dislocation structures and stacking faults form in monoclinic Al9Co2 type brittle intermetallics. This study shows that proper introduction of heterogeneous microstructures and nanoscale medium entropy intermetallics offer an alternative solution to the design of ultrastrong, deformable Al alloys via additive manufacturing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA