Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
BMC Plant Biol ; 23(1): 170, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37003963

RESUMO

BACKGROUND: RNA-sequencing (RNA-seq) has been widely used to study the dynamic expression patterns of transcribed genes, which can lead to new biological insights. However, processing and analyzing these huge amounts of histological data remains a great challenge for wet labs and field researchers who lack bioinformatics experience and computational resources. RESULTS: We present BarleyExpDB, an easy-to-operate, free, and web-accessible database that integrates transcriptional profiles of barley at different growth and developmental stages, tissues, and stress conditions, as well as differential expression of mutants and populations to build a platform for barley expression and visualization. The expression of a gene of interest can be easily queried by searching by known gene ID or sequence similarity. Expression data can be displayed as a heat map, along with functional descriptions as well as Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, Proteins Families Database, and Simple Modular Architecture Research Tool annotations. CONCLUSIONS: BarleyExpDB will serve as a valuable resource for the barley research community to leverage the vast publicly available RNA-seq datasets for functional genomics research and crop molecular breeding.


Assuntos
Hordeum , Hordeum/genética , Genômica , Bases de Dados Genéticas , Biologia Computacional , Expressão Gênica , Perfilação da Expressão Gênica
2.
BMC Plant Biol ; 22(1): 454, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36131236

RESUMO

BACKGROUND: A gene family comprises a group of genes with similar functional domains that play various roles in plant growth, development, and responses to environmental stimuli. Barley (Hordeum vulgare L.) is the fourth most cultivated cereal crop worldwide, and it is an important model species for genetic studies. Systematic identification and annotation of gene families are key for studies of molecular function and evolutionary history. RESULTS: We constructed a multi-omics database containing 5593 genes of 77 gene families called the Barley Gene Family Database (BGFD: http://barleygfdb.com ). BGFD is a free, user-friendly, and web-accessible platform that provides data on barley family genes. BGFD provides intuitive visual displays to facilitate studies of the physicochemical properties, gene structure, phylogenetic relationships, and motif organization of genes. Massive multi-omics datasets have been acquired and processed to generate an atlas of expression pattern profiles and genetic variation in BGFD. The platform offers several practical toolkits to conduct searches, browse, and employ BLAST functions, and the data are downloadable. CONCLUSIONS: BGFD will aid research on the domestication and adaptive evolution of barley; it will also facilitate the screening of candidate genes and exploration of important agronomic traits in barley.


Assuntos
Hordeum , Hordeum/genética , Filogenia
3.
Mitochondrial DNA B Resour ; 7(5): 851-853, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35602334

RESUMO

Astragalus sinicus Linne 1767 is a traditional winter-growing green manure, that plays an important role in upgrading soil fertility and maintaining crop yield and quality for rice fields. This study reports the complete chloroplast genome of A. sinicus. The chloroplast genome contained 110 complete genes, including 76 protein-coding genes, 4 ribosomal RNA genes, and 30 tRNA genes with 123,830 bp in length and a 34.66% GC content with IR loss. The evolutionary history, referred to as the maximum-likelihood (ML), showed that A. sinicus and Astragalus bhotanensis were most closely related. The chloroplast genome analysis of A. sinicus will serve as a reference for future studies on species evolution, plant conservation, and molecular phylogeny in Astragalus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA