Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Planta ; 260(1): 13, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38809276

RESUMO

MAIN CONCLUSION: PM3 and PM8 alleles carried by two CIMMYT wheat lines confer powdery mildew resistance in seedlings and/or adult plants. A stage-specific epistatic interaction was observed between PM3 and PM8. Powdery mildew is an important foliar disease of wheat. Major genes for resistance, which have been widely used in wheat breeding programs, are typically effective against only limited numbers of virulence genes of the pathogen. The main aim of this study was to map resistance loci in wheat lines 7HRWSN58 and ZWW09-149 from the International Maize and Wheat Improvement Center (CIMMYT). Doubled haploid populations (Magenta/7HRWSN58 and Emu Rock/ZWW09-149) were developed and grown in controlled environment experiments and inoculated with a composite of Blumeria graminis f.sp. tritici isolates that had been collected at various locations in Western Australia. Plants were assessed for powdery mildew symptoms (percentage leaf area diseased) on seedlings and adult plants. Populations were subjected to genotyping-by-sequencing and assayed for known SNPs in the resistance gene PM3. Linkage maps were constructed, and markers were anchored to the wheat reference genome sequence. In both populations, there were asymptomatic lines that exhibited no symptoms. Among symptomatic lines, disease severity varied widely. In the Magenta/7HRWSN58 population, most of the observed variation was attributed to the PM3 region of chromosome 1A, with the allele from 7HRWSN58 conferring resistance in seedlings and adult plants. In the Emu Rock/ZWW09-149 population, two interacting quantitative trait loci were mapped: one at PM3 and the other on chromosome 1B. The Emu Rock/ZWW09-149 population was confirmed to segregate for a 1BL·1RS translocation that carries the PM8 powdery mildew resistance gene from rye. Consistent with previous reports that PM8-derived resistance can be suppressed by PM3 alleles, the observed interaction between the quantitative trait loci on chromosomes 1A and 1B indicated that the PM3 allele carried by ZWW09-149 suppresses PM8-derived resistance from ZWW09-149, but only at the seedling stage. In adult plants, the PM8 region conferred resistance regardless of the PM3 genotype. The resistance sources and molecular markers that were investigated here could be useful in wheat breeding.


Assuntos
Ascomicetos , Mapeamento Cromossômico , Resistência à Doença , Doenças das Plantas , Plântula , Triticum , Triticum/genética , Triticum/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Ascomicetos/fisiologia , Ascomicetos/patogenicidade , Plântula/genética , Plântula/microbiologia , Resistência à Doença/genética , Alelos , Locos de Características Quantitativas/genética , Polimorfismo de Nucleotídeo Único/genética , Ligação Genética , Genes de Plantas , Melhoramento Vegetal , Genótipo
2.
Theor Appl Genet ; 136(3): 61, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36912976

RESUMO

KEY MESSAGE: Novel sources of genetic resistance to tan spot in Australia have been discovered using one-step GWAS and genomic prediction models that accounts for additive and non-additive genetic variation. Tan spot is a foliar disease in wheat caused by the fungal pathogen Pyrenophora tritici-repentis (Ptr) and has been reported to generate up to 50% yield losses under favourable disease conditions. Although farming management practices are available to reduce disease, the most economically sustainable approach is establishing genetic resistance through plant breeding. To further understand the genetic basis for disease resistance, we conducted a phenotypic and genetic analysis study using an international diversity panel of 192 wheat lines from the Maize and Wheat Improvement Centre (CIMMYT), the International Centre for Agriculture in the Dry Areas (ICARDA) and Australian (AUS) wheat research programmes. The panel was evaluated using Australian Ptr isolates in 12 experiments conducted in three Australian locations over two years, with assessment for tan spot symptoms at various plant development stages. Phenotypic modelling indicated high heritability for nearly all tan spot traits with ICARDA lines displaying the greatest average resistance. We then conducted a one-step whole-genome analysis of each trait using a high-density SNP array, revealing a large number of highly significant QTL exhibiting a distinct lack of repeatability across the traits. To better summarise the genetic resistance of the lines, a one-step genomic prediction of each tan spot trait was conducted by combining the additive and non-additive predicted genetic effects of the lines. This revealed multiple CIMMYT lines with broad genetic resistance across the developmental stages of the plant which can be utilised in Australian wheat breeding programmes to improve tan spot disease resistance.


Assuntos
Locos de Características Quantitativas , Triticum , Triticum/genética , Triticum/microbiologia , Mapeamento Cromossômico , Resistência à Doença/genética , Melhoramento Vegetal , Austrália , Doenças das Plantas/genética , Doenças das Plantas/microbiologia
3.
Theor Appl Genet ; 132(1): 149-162, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30327845

RESUMO

KEY MESSAGE: GWAS detected 11 yellow spot resistance QTL in the Vavilov wheat collection. Promising adult-plant resistance loci could provide a sustainable genetic solution to yellow spot in modern wheat varieties. Yellow spot, caused by the fungal pathogen Pyrenophora tritici-repentis (Ptr), is the most economically damaging foliar disease of wheat in Australia. Genetic resistance is considered to be the most sustainable means for disease management, yet the genomic regions underpinning resistance to Ptr, particularly adult-plant resistance (APR), remain vastly unknown. In this study, we report results of a genome-wide association study using 295 accessions from the Vavilov wheat collection which were extensively tested for response to Ptr infections in glasshouse and field trials at both seedling an adult growth stages. Combining phenotypic datasets from multiple experiments in Australia and Russia with 25,286 genome-wide, high-quality DArTseq markers, we detected a total of 11 QTL, of which 5 were associated with seedling resistance, 3 with all-stage resistance, and 3 with APR. Interestingly, the novel APR QTL were effective even in the presence of host sensitivity gene Tsn1. These genomic regions could offer broad-spectrum yellow spot protection, not just to ToxA but also other pathogenicity or virulence factors. Vavilov wheat accessions carrying APR QTL combinations displayed enhanced levels of resistance highlighting the potential for QTL stacking through breeding. We propose that the APR genetic factors discovered in our study could be used to improve resistance levels in modern wheat varieties and contribute to the sustainable control of yellow spot.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Triticum/genética , Alelos , Ascomicetos/patogenicidade , Austrália , Estudos de Associação Genética , Genótipo , Haplótipos , Fenótipo , Melhoramento Vegetal , Doenças das Plantas/microbiologia , Federação Russa , Triticum/microbiologia
4.
Theor Appl Genet ; 130(12): 2637-2654, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28913578

RESUMO

KEY MESSAGE: QTL for tan spot resistance were mapped on wheat chromosomes 1A and 2A. Lines were developed with resistance alleles at these loci and at the tsn1 locus on chromosome 5B. These lines expressed significantly higher resistance than the parent with tsn1 only. Tan spot (syn. yellow spot and yellow leaf spot) caused by Pyrenophora tritici-repentis is an important foliar disease of wheat in Australia. Few resistance genes have been mapped in Australian germplasm and only one, known as tsn1 located on chromosome 5B, is known in Australian breeding programs. This gene confers insensitivity to the fungal effector ToxA. The main aim of this study was to map novel resistance loci in two populations: Calingiri/Wyalkatchem, which is fixed for the ToxA-insensitivity allele tsn1, and IGW2574/Annuello, which is fixed for the ToxA-sensitivity allele Tsn1. A second aim was to combine new loci with tsn1 to develop lines with improved resistance. Tan spot severity was evaluated at various growth stages and in multiple environments. Symptom severity traits exhibited quantitative variation. The most significant quantitative trait loci (QTL) were detected on chromosomes 2A and 1A. The QTL on 2A explained up to 29.2% of the genotypic variation in the Calingiri/Wyalkatchem population with the resistance allele contributed by Wyalkatchem. The QTL on 1A explained up to 28.1% of the genotypic variation in the IGW2574/Annuello population with the resistance allele contributed by Annuello. The resistance alleles at both QTL were successfully combined with tsn1 to develop lines that express significantly better resistance at both seedling and adult plant stages than Calingiri which has tsn1 only.


Assuntos
Resistência à Doença/genética , Doenças das Plantas/genética , Locos de Características Quantitativas , Triticum/genética , Alelos , Ascomicetos , Austrália , Mapeamento Cromossômico , Cromossomos de Plantas , Modelos Lineares , Modelos Genéticos , Fenótipo , Doenças das Plantas/microbiologia , Triticum/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA