Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Dis Model Mech ; 15(7)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35758026

RESUMO

Retinitis pigmentosa (RP), a retinal degenerative disease, is the leading cause of heritable blindness. Previously, we described that Arap1-/- mice develop a similar pattern of photoreceptor degeneration. Arap1 is an Arf-directed GTPase-activating protein shown to modulate actin cytoskeletal dynamics. Curiously, Arap1 expression was detected in Müller glia and retinal pigment epithelium (RPE), but not the photoreceptors themselves. In this study, we generated conditional knockout mice for Müller glia/RPE, Müller glia and RPE via targeting Rlbp1, Glast and Vmd2 promoters, respectively, to drive Cre recombinase expression to knock out Arap1. Vmd2-Cre Arap1tm1c/tm1c and Rlbp1-Cre Arap1tm1c/tm1c mice, but not Glast-Cre Arap1tm1c/tm1c mice, recapitulated the phenotype originally observed in germline Arap1-/- mice. Mass spectrometry analysis of human ARAP1 co-immunoprecipitation identified candidate binding partners of ARAP1, revealing potential interactants involved in phagocytosis, cytoskeletal composition, intracellular trafficking and endocytosis. Quantification of outer segment phagocytosis in vivo demonstrated a clear phagocytic defect in Arap1-/- mice compared to Arap1+/+ controls. We conclude that Arap1 expression in RPE is necessary for photoreceptor survival due to its indispensable function in RPE phagocytosis. This article has an associated First Person interview with the first author of the paper.


Assuntos
Degeneração Retiniana , Retinose Pigmentar , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Transporte/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Camundongos , Camundongos Knockout , Fagocitose , Retina/metabolismo , Degeneração Retiniana/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Retinose Pigmentar/metabolismo
2.
Sci Rep ; 12(1): 20791, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36456625

RESUMO

We searched a database of single-gene knockout (KO) mice produced by the International Mouse Phenotyping Consortium (IMPC) to identify candidate ciliopathy genes. We first screened for phenotypes in mouse lines with both ocular and renal or reproductive trait abnormalities. The STRING protein interaction tool was used to identify interactions between known cilia gene products and those encoded by the genes in individual knockout mouse strains in order to generate a list of "candidate ciliopathy genes." From this list, 32 genes encoded proteins predicted to interact with known ciliopathy proteins. Of these, 25 had no previously described roles in ciliary pathobiology. Histological and morphological evidence of phenotypes found in ciliopathies in knockout mouse lines are presented as examples (genes Abi2, Wdr62, Ap4e1, Dync1li1, and Prkab1). Phenotyping data and descriptions generated on IMPC mouse line are useful for mechanistic studies, target discovery, rare disease diagnosis, and preclinical therapeutic development trials. Here we demonstrate the effective use of the IMPC phenotype data to uncover genes with no previous role in ciliary biology, which may be clinically relevant for identification of novel disease genes implicated in ciliopathies.


Assuntos
Ciliopatias , Camundongos , Animais , Camundongos Knockout , Ciliopatias/genética , Técnicas de Inativação de Genes , Cílios/genética , Bases de Dados Factuais , Proteínas do Tecido Nervoso , Proteínas de Ciclo Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA