Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 590(7846): 504-508, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33536620

RESUMO

Amplification of chromosomal region 8p11-12 is a common genetic alteration that has been implicated in the aetiology of lung squamous cell carcinoma (LUSC)1-3. The FGFR1 gene is the main candidate driver of tumorigenesis within this region4. However, clinical trials evaluating FGFR1 inhibition as a targeted therapy have been unsuccessful5. Here we identify the histone H3 lysine 36 (H3K36) methyltransferase NSD3, the gene for which is located in the 8p11-12 amplicon, as a key regulator of LUSC tumorigenesis. In contrast to other 8p11-12 candidate LUSC drivers, increased expression of NSD3 correlated strongly with its gene amplification. Ablation of NSD3, but not of FGFR1, attenuated tumour growth and extended survival in a mouse model of LUSC. We identify an LUSC-associated variant NSD3(T1232A) that shows increased catalytic activity for dimethylation of H3K36 (H3K36me2) in vitro and in vivo. Structural dynamic analyses revealed that the T1232A substitution elicited localized mobility changes throughout the catalytic domain of NSD3 to relieve auto-inhibition and to increase accessibility of the H3 substrate. Expression of NSD3(T1232A) in vivo accelerated tumorigenesis and decreased overall survival in mouse models of LUSC. Pathological generation of H3K36me2 by NSD3(T1232A) reprograms the chromatin landscape to promote oncogenic gene expression signatures. Furthermore, NSD3, in a manner dependent on its catalytic activity, promoted transformation in human tracheobronchial cells and growth of xenografted human LUSC cell lines with amplification of 8p11-12. Depletion of NSD3 in patient-derived xenografts from primary LUSCs containing NSD3 amplification or the NSD3(T1232A)-encoding variant attenuated neoplastic growth in mice. Finally, NSD3-regulated LUSC-derived xenografts were hypersensitive to bromodomain inhibition. Thus, our work identifies NSD3 as a principal 8p11-12 amplicon-associated oncogenic driver in LUSC, and suggests that NSD3-dependency renders LUSC therapeutically vulnerable to bromodomain inhibition.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/química , Histonas/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Proteínas Nucleares/metabolismo , Animais , Biocatálise , Carcinogênese/genética , Carcinoma de Células Escamosas/genética , Feminino , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/genética , Humanos , Neoplasias Pulmonares/genética , Masculino , Metilação , Camundongos , Modelos Moleculares , Mutação , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/deficiência , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Stem Cells ; 41(4): 328-340, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36640125

RESUMO

Given the increasing popularity of electronic cigarettes (e-cigs), it is imperative to evaluate the potential health risks of e-cigs, especially in users with preexisting health concerns such as pulmonary arterial hypertension (PAH). The aim of the present study was to investigate whether differential susceptibility exists between healthy and patients with PAH to e-cig exposure and the molecular mechanisms contributing to it. Patient-specific induced pluripotent stem cell-derived endothelial cells (iPSC-ECs) from healthy individuals and patients with PAH were used to investigate whether e-cig contributes to the pathophysiology of PAH and affects EC homeostasis in PAH. Our results showed that PAH iPSC-ECs showed a greater amount of damage than healthy iPSC-ECs upon e-cig exposure. Transcriptomic analyses revealed that differential expression of Akt3 may be responsible for increased autophagic flux impairment in PAH iPSC-ECs, which underlies increased susceptibility upon e-cig exposure. Moreover, knockdown of Akt3 in healthy iPSC-ECs significantly induced autophagic flux impairment and endothelial dysfunction, which further increased with e-cig treatment, thus mimicking the PAH cell phenotype after e-cig exposure. In addition, functional disruption of mTORC2 by knocking down Rictor in PAH iPSC-ECs caused autophagic flux impairment, which was mediated by downregulation of Akt3. Finally, pharmacological induction of autophagy via direct inhibition of mTORC1 and indirect activation of mTORC2 with rapamycin reverses e-cig-induced decreased Akt3 expression, endothelial dysfunction, autophagic flux impairment, and decreased cell viability, and migration in PAH iPSC-ECs. Taken together, these data suggest a potential link between autophagy and Akt3-mediated increased susceptibility to e-cig in PAH.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Células-Tronco Pluripotentes Induzidas , Hipertensão Arterial Pulmonar , Humanos , Hipertensão Arterial Pulmonar/metabolismo , Células Endoteliais/metabolismo , Autofagia , Células-Tronco Pluripotentes Induzidas/fisiologia
3.
Ecotoxicol Environ Saf ; 283: 116793, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39094453

RESUMO

Biomass-related airborne fine particulate matter (PM2.5) is an important risk factor for chronic obstructive pulmonary disease (COPD). Macrophage polarization has been reported to be involved in PM2.5-induced COPD, but the dynamic characteristics and underlying mechanism of this process remain unclear. Our study established a PM2.5-induced COPD mouse model and revealed that M2 macrophages predominantly presented after 4 and 6 months of PM2.5 exposure, during which a notable increase in MMP12 was observed. Single cell analysis of lung tissues from COPD patients and mice further revealed that M2 macrophages were the dominant macrophage subpopulation in COPD, with MMP12 being involved as a hub gene. In vitro experiments further demonstrated that PM2.5 induced M2 polarization and increased MMP12 expression. Moreover, we found that PM2.5 increased IL-4 expression, STAT6 phosphorylation and nuclear translocation. Nuclear pSTAT6 then bound to the MMP12 promoter region. Furthermore, the inhibition of STAT6 phosphorylation effectively abrogated the PM2.5-induced increase in MMP12. Using a coculture system, we observed a significantly reduced level of E-cadherin in alveolar epithelial cells cocultured with PM2.5-exposed macrophages, while the decrease in E-cadherin was reversed by the addition of an MMP12 inhibitor to the co-culture system. Taken together, these findings indicated that PM2.5 induced M2 macrophage polarization and MMP12 upregulation via the IL-4/STAT6 pathway, which resulted in alveolar epithelial barrier dysfunction and excessive extracellular matrix (ECM) degradation, and ultimately led to COPD progression. These findings may help to elucidate the role of macrophages in COPD, and suggest promising directions for potential therapeutic strategies.


Assuntos
Interleucina-4 , Macrófagos , Metaloproteinase 12 da Matriz , Material Particulado , Doença Pulmonar Obstrutiva Crônica , Fator de Transcrição STAT6 , Regulação para Cima , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Metaloproteinase 12 da Matriz/metabolismo , Animais , Material Particulado/toxicidade , Fator de Transcrição STAT6/metabolismo , Camundongos , Macrófagos/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Transdução de Sinais/efeitos dos fármacos , Poluentes Atmosféricos/toxicidade
4.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542214

RESUMO

Our research focuses on expression patterns in human and mouse embryonic cardiomyocytes and endothelial cells at the single-cell level. We analyzed single-cell datasets containing different species, cardiac chambers, and cell types. We identified developmentally dynamic genes associated with different cellular lineages in the heart and explored their expression and possible roles during cardiac development. We used dynamic time warping, a method that aligns temporal sequences, to compare these developmental stages across two species. Our results indicated that atrial cardiomyocytes from E9.5 to E13.5 in mice corresponded to a human embryo age of approximately 5-6 weeks, whereas in ventricular cardiomyocytes, they corresponded to a human embryo age of 13-15 weeks. The endothelial cells in mouse hearts corresponded to 6-7-week-old human embryos. Next, we focused on expression changes in cardiac transcription factors over time in different species and chambers, and found that Prdm16 might be related to interspecies cardiomyocyte differences. Moreover, we compared the developmental trajectories of cardiomyocytes differentiated from human pluripotent stem cells and embryonic cells. This analysis explored the relationship between their respective developments and provided compelling evidence supporting the relevance of our dynamic time-warping results. These significant findings contribute to a deeper understanding of cardiac development across different species.


Assuntos
Células Endoteliais , Miócitos Cardíacos , Humanos , Animais , Camundongos , Lactente , Miócitos Cardíacos/metabolismo , Diferenciação Celular , Embrião de Mamíferos , Átrios do Coração/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
J Med Virol ; 95(1): e28283, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36333280

RESUMO

We agree that smoking might be a risk factor for the severity of COVID-19, but in our previous study, smoking was not so robust compared with our conclusion. Also, we strongly agreed that COVID-19 patients with diabetes or other chronic diseases might worsen the situation of the disease. But these factors were out of the scope of our study and we had published other research on this topic related to diabetes. Because of the limited sample size and original medical records, our study could not cover many factors. But we wish our study will be a useful and meaningful pilot study for future studies.

6.
Circulation ; 143(21): 2074-2090, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33764154

RESUMO

BACKGROUND: Metabolic alterations provide substrates that influence chromatin structure to regulate gene expression that determines cell function in health and disease. Heightened proliferation of smooth muscle cells (SMC) leading to the formation of a neointima is a feature of pulmonary arterial hypertension (PAH) and systemic vascular disease. Increased glycolysis is linked to the proliferative phenotype of these SMC. METHODS: RNA sequencing was applied to pulmonary arterial SMC (PASMC) from PAH patients with and without a BMPR2 (bone morphogenetic receptor 2) mutation versus control PASMC to uncover genes required for their heightened proliferation and glycolytic metabolism. Assessment of differentially expressed genes established metabolism as a major pathway, and the most highly upregulated metabolic gene in PAH PASMC was aldehyde dehydrogenase family 1 member 3 (ALDH1A3), an enzyme previously linked to glycolysis and proliferation in cancer cells and systemic vascular SMC. We determined if these functions are ALDH1A3-dependent in PAH PASMC, and if ALDH1A3 is required for the development of pulmonary hypertension in a transgenic mouse. Nuclear localization of ALDH1A3 in PAH PASMC led us to determine whether and how this enzyme coordinately regulates gene expression and metabolism in PAH PASMC. RESULTS: ALDH1A3 mRNA and protein were increased in PAH versus control PASMC, and ALDH1A3 was required for their highly proliferative and glycolytic properties. Mice with Aldh1a3 deleted in SMC did not develop hypoxia-induced pulmonary arterial muscularization or pulmonary hypertension. Nuclear ALDH1A3 converted acetaldehyde to acetate to produce acetyl coenzyme A to acetylate H3K27, marking active enhancers. This allowed for chromatin modification at NFYA (nuclear transcription factor Y subunit α) binding sites via the acetyltransferase KAT2B (lysine acetyltransferase 2B) and permitted NFY-mediated transcription of cell cycle and metabolic genes that is required for ALDH1A3-dependent proliferation and glycolysis. Loss of BMPR2 in PAH SMC with or without a mutation upregulated ALDH1A3, and transcription of NFYA and ALDH1A3 in PAH PASMC was ß-catenin dependent. CONCLUSIONS: Our studies have uncovered a metabolic-transcriptional axis explaining how dividing cells use ALDH1A3 to coordinate their energy needs with the epigenetic and transcriptional regulation of genes required for SMC proliferation. They suggest that selectively disrupting the pivotal role of ALDH1A3 in PAH SMC, but not endothelial cells, is an important therapeutic consideration.


Assuntos
Aldeído Oxirredutases/genética , Regulação da Expressão Gênica , Hipertensão Arterial Pulmonar/genética , Aldeído Oxirredutases/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Músculo Liso/metabolismo , Músculo Liso/patologia , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais
7.
J Med Virol ; 94(10): 4727-4734, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35656698

RESUMO

Comorbidities such as hypertension could exacerbate symptoms of coronaviral disease 2019 (COVID)-19 infection. Patients with hypertension may receive both anti-COVID-19 and antihypertension therapies when infected with COVID-19. However, it is not clear how different classes of anti-hypertension drugs impact the outcome of COVID-19 treatment. Herein, we explore the association between the inpatient use of different classes of anti-hypertension drugs and mortality among patients with hypertension hospitalized with COVID-19. We totally collected data from 278 patients with hypertension diagnosed with COVID-19 admitted to hospitals in Wuhan from February 1 to April 1, 2020. A retrospective study was conducted and single-cell RNA-sequencing (RNA-Seq) analysis of treatment-related genes was performed. The results showed that Angiotensin II receptor blocker (ARB) and calcium channel blocker (CCB) drugs significantly increased the survival rate but the use of angiotensin-converting enzyme inhibitor/ß-block/diuretic drugs did not affect the mortality caused by COVID-19. Based on the analysis of four public data sets of single-cell RNA-Seq on COVID-19 patients, we concluded that JUN, LST1 genes may play a role in the effect of ARB on COVID-19-related mortality, whereas CALM1 gene may contribute to the effect of CCB on COVID-19-related mortality. Our results provide guidance on the selection of antihypertension drugs for hypertensive patients infected with COVID-19.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , Hipertensão , Antagonistas de Receptores de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Anti-Hipertensivos/uso terapêutico , COVID-19/complicações , Bloqueadores dos Canais de Cálcio/uso terapêutico , Biologia Computacional , Humanos , Hipertensão/complicações , Hipertensão/tratamento farmacológico , Estudos Retrospectivos , SARS-CoV-2
8.
Stem Cells ; 38(7): 822-833, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32232889

RESUMO

Patient-derived pluripotent stem cells (PSCs) have greatly transformed the current understanding of human heart development and cardiovascular disease. Cardiomyocytes derived from personalized PSCs are powerful tools for modeling heart disease and performing patient-based cardiac toxicity testing. However, these PSC-derived cardiomyocytes (PSC-CMs) are a mixed population of atrial-, ventricular-, and pacemaker-like cells in the dish, hindering the future of precision cardiovascular medicine. Recent insights gleaned from the developing heart have paved new avenues to refine subtype-specific cardiomyocytes from patients with known pathogenic genetic variants and clinical phenotypes. Here, we discuss the recent progress on generating subtype-specific (atrial, ventricular, and nodal) cardiomyocytes from the perspective of embryonic heart development and how human pluripotent stem cells will expand our current knowledge on molecular mechanisms of cardiovascular disease and the future of precision medicine.


Assuntos
Cardiopatias , Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Diferenciação Celular/genética , Humanos , Miócitos Cardíacos , Medicina de Precisão
9.
Nature ; 516(7529): 51-5, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-25383518

RESUMO

ß-catenin is a multi-functional protein that has an important role in the mature central nervous system; its dysfunction has been implicated in several neuropsychiatric disorders, including depression. Here we show that in mice ß-catenin mediates pro-resilient and anxiolytic effects in the nucleus accumbens, a key brain reward region, an effect mediated by D2-type medium spiny neurons. Using genome-wide ß-catenin enrichment mapping, we identify Dicer1-important in small RNA (for example, microRNA) biogenesis--as a ß-catenin target gene that mediates resilience. Small RNA profiling after excising ß-catenin from nucleus accumbens in the context of chronic stress reveals ß-catenin-dependent microRNA regulation associated with resilience. Together, these findings establish ß-catenin as a critical regulator in the development of behavioural resilience, activating a network that includes Dicer1 and downstream microRNAs. We thus present a foundation for the development of novel therapeutic targets to promote stress resilience.


Assuntos
RNA Helicases DEAD-box/genética , Regulação da Expressão Gênica , MicroRNAs/genética , Resiliência Psicológica , Ribonuclease III/genética , Estresse Fisiológico/genética , beta Catenina/metabolismo , Adaptação Fisiológica/genética , Animais , RNA Helicases DEAD-box/metabolismo , Depressão/fisiopatologia , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Neurônios/metabolismo , Ribonuclease III/metabolismo , Transdução de Sinais , beta Catenina/genética
10.
Proc Natl Acad Sci U S A ; 114(52): E11111-E11120, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29203658

RESUMO

Patient-specific pluripotent stem cells (PSCs) can be generated via nuclear reprogramming by transcription factors (i.e., induced pluripotent stem cells, iPSCs) or by somatic cell nuclear transfer (SCNT). However, abnormalities and preclinical application of differentiated cells generated by different reprogramming mechanisms have yet to be evaluated. Here we investigated the molecular and functional features, and drug response of cardiomyocytes (PSC-CMs) and endothelial cells (PSC-ECs) derived from genetically relevant sets of human iPSCs, SCNT-derived embryonic stem cells (nt-ESCs), as well as in vitro fertilization embryo-derived ESCs (IVF-ESCs). We found that differentiated cells derived from isogenic iPSCs and nt-ESCs showed comparable lineage gene expression, cellular heterogeneity, physiological properties, and metabolic functions. Genome-wide transcriptome and DNA methylome analysis indicated that iPSC derivatives (iPSC-CMs and iPSC-ECs) were more similar to isogenic nt-ESC counterparts than those derived from IVF-ESCs. Although iPSCs and nt-ESCs shared the same nuclear DNA and yet carried different sources of mitochondrial DNA, CMs derived from iPSC and nt-ESCs could both recapitulate doxorubicin-induced cardiotoxicity and exhibited insignificant differences on reactive oxygen species generation in response to stress condition. We conclude that molecular and functional characteristics of differentiated cells from human PSCs are primarily attributed to the genetic compositions rather than the reprogramming mechanisms (SCNT vs. iPSCs). Therefore, human iPSCs can replace nt-ESCs as alternatives for generating patient-specific differentiated cells for disease modeling and preclinical drug testing.


Assuntos
Diferenciação Celular , Metilação de DNA , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Técnicas de Transferência Nuclear , Células Endoteliais/citologia , Estudo de Associação Genômica Ampla , Células-Tronco Embrionárias Humanas/citologia , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Miócitos Cardíacos/citologia
11.
Circ Res ; 121(11): 1237-1250, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-29030344

RESUMO

RATIONALE: Regulatory DNA elements in the human genome play important roles in determining the transcriptional abundance and spatiotemporal gene expression during embryonic heart development and somatic cell reprogramming. It is not well known how chromatin marks in regulatory DNA elements are modulated to establish cell type-specific gene expression in the human heart. OBJECTIVE: We aimed to decipher the cell type-specific epigenetic signatures in regulatory DNA elements and how they modulate heart-specific gene expression. METHODS AND RESULTS: We profiled genome-wide transcriptional activity and a variety of epigenetic marks in the regulatory DNA elements using massive RNA-seq (n=12) and ChIP-seq (chromatin immunoprecipitation combined with high-throughput sequencing; n=84) in human endothelial cells (CD31+CD144+), cardiac progenitor cells (Sca-1+), fibroblasts (DDR2+), and their respective induced pluripotent stem cells. We uncovered 2 classes of regulatory DNA elements: class I was identified with ubiquitous enhancer (H3K4me1) and promoter (H3K4me3) marks in all cell types, whereas class II was enriched with H3K4me1 and H3K4me3 in a cell type-specific manner. Both class I and class II regulatory elements exhibited stimulatory roles in nearby gene expression in a given cell type. However, class I promoters displayed more dominant regulatory effects on transcriptional abundance regardless of distal enhancers. Transcription factor network analysis indicated that human induced pluripotent stem cells and somatic cells from the heart selected their preferential regulatory elements to maintain cell type-specific gene expression. In addition, we validated the function of these enhancer elements in transgenic mouse embryos and human cells and identified a few enhancers that could possibly regulate the cardiac-specific gene expression. CONCLUSIONS: Given that a large number of genetic variants associated with human diseases are located in regulatory DNA elements, our study provides valuable resources for deciphering the epigenetic modulation of regulatory DNA elements that fine-tune spatiotemporal gene expression in human cardiac development and diseases.


Assuntos
Montagem e Desmontagem da Cromatina , Cromatina/genética , DNA/genética , Células Endoteliais/metabolismo , Epigênese Genética , Fibroblastos/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Elementos Reguladores de Transcrição , Animais , Células Cultivadas , Reprogramação Celular , Técnicas de Reprogramação Celular , Cromatina/metabolismo , DNA/metabolismo , Metilação de DNA , Regulação da Expressão Gênica no Desenvolvimento , Genótipo , Histonas/genética , Histonas/metabolismo , Humanos , Camundongos Transgênicos , Fenótipo , Regiões Promotoras Genéticas , Transfecção
12.
Circ Res ; 120(10): 1561-1571, 2017 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-28246128

RESUMO

RATIONALE: Targeted genetic engineering using programmable nucleases such as transcription activator-like effector nucleases (TALENs) is a valuable tool for precise, site-specific genetic modification in the human genome. OBJECTIVE: The emergence of novel technologies such as human induced pluripotent stem cells (iPSCs) and nuclease-mediated genome editing represent a unique opportunity for studying cardiovascular diseases in vitro. METHODS AND RESULTS: By incorporating extensive literature and database searches, we designed a collection of TALEN constructs to knockout 88 human genes that are associated with cardiomyopathies and congenital heart diseases. The TALEN pairs were designed to induce double-strand DNA break near the starting codon of each gene that either disrupted the start codon or introduced a frameshift mutation in the early coding region, ensuring faithful gene knockout. We observed that all the constructs were active and disrupted the target locus at high frequencies. To illustrate the utility of the TALEN-mediated knockout technique, 6 individual genes (TNNT2, LMNA/C, TBX5, MYH7, ANKRD1, and NKX2.5) were knocked out with high efficiency and specificity in human iPSCs. By selectively targeting a pathogenic mutation (TNNT2 p.R173W) in patient-specific iPSC-derived cardiac myocytes, we demonstrated that the knockout strategy ameliorates the dilated cardiomyopathy phenotype in vitro. In addition, we modeled the Holt-Oram syndrome in iPSC-cardiac myocytes in vitro and uncovered novel pathways regulated by TBX5 in human cardiac myocyte development. CONCLUSIONS: Collectively, our study illustrates the powerful combination of iPSCs and genome editing technologies for understanding the biological function of genes, and the pathological significance of genetic variants in human cardiovascular diseases. The methods, strategies, constructs, and iPSC lines developed in this study provide a validated, readily available resource for cardiovascular research.


Assuntos
Doenças Cardiovasculares/genética , Técnicas de Inativação de Genes/métodos , Biblioteca Gênica , Engenharia Genética/métodos , Células-Tronco Pluripotentes Induzidas/fisiologia , Sequência de Bases , Doenças Cardiovasculares/terapia , Células Cultivadas , Marcação de Genes/métodos , Humanos , Células-Tronco Pluripotentes Induzidas/transplante
13.
Stem Cells ; 35(10): 2138-2149, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28710827

RESUMO

Both human embryonic stem cell-derived cardiomyocytes (ESC-CMs) and human induced pluripotent stem cell-derived CMs (iPSC-CMs) can serve as unlimited cell sources for cardiac regenerative therapy. However, the functional equivalency between human ESC-CMs and iPSC-CMs for cardiac regenerative therapy has not been demonstrated. Here, we performed a head-to-head comparison of ESC-CMs and iPSC-CMs in their ability to restore cardiac function in a rat myocardial infarction (MI) model as well as their exosomal secretome. Human ESCs and iPSCs were differentiated into CMs using small molecule inhibitors. Fluorescence-activated cell sorting analysis confirmed ∼85% and ∼83% of CMs differentiated from ESCs and iPSCs, respectively, were positive for cardiac troponin T. At a single-cell level, both cell types displayed similar calcium handling and electrophysiological properties, with gene expression comparable with the human fetal heart marked by striated sarcomeres. Sub-acute transplantation of ESC-CMs and iPSC-CMs into nude rats post-MI improved cardiac function, which was associated with increased expression of angiogenic genes in vitro following hypoxia. Profiling of exosomal microRNAs (miRs) and long non-coding RNAs (lncRNAs) revealed that both groups contain an identical repertoire of miRs and lncRNAs, including some that are known to be cardioprotective. We demonstrate that both ESC-CMs and iPSC-CMs can facilitate comparable cardiac repair. This is advantageous because, unlike allogeneic ESC-CMs used in therapy, autologous iPSC-CMs could potentially avoid immune rejection when used for cardiac cell transplantation in the future. Stem Cells 2017;35:2138-2149.


Assuntos
Células-Tronco Embrionárias Humanas/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Miócitos Cardíacos/metabolismo , Diferenciação Celular , Células Cultivadas , Exossomos , Humanos
14.
Am J Respir Crit Care Med ; 195(7): 930-941, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27779452

RESUMO

RATIONALE: Idiopathic or heritable pulmonary arterial hypertension is characterized by loss and obliteration of lung vasculature. Endothelial cell dysfunction is pivotal to the pathophysiology, but different causal mechanisms may reflect a need for patient-tailored therapies. OBJECTIVES: Endothelial cells differentiated from induced pluripotent stem cells were compared with pulmonary arterial endothelial cells from the same patients with idiopathic or heritable pulmonary arterial hypertension, to determine whether they shared functional abnormalities and altered gene expression patterns that differed from those in unused donor cells. We then investigated whether endothelial cells differentiated from pluripotent cells could serve as surrogates to test emerging therapies. METHODS: Functional changes assessed included adhesion, migration, tube formation, and propensity to apoptosis. Expression of bone morphogenetic protein receptor type 2 (BMPR2) and its target, collagen IV, signaling of the phosphorylated form of the mothers against decapentaplegic proteins (pSMAD1/5), and transcriptomic profiles were also analyzed. MEASUREMENTS AND MAIN RESULTS: Native pulmonary arterial and induced pluripotent stem cell-derived endothelial cells from patients with idiopathic and heritable pulmonary arterial hypertension compared with control subjects showed a similar reduction in adhesion, migration, survival, and tube formation, and decreased BMPR2 and downstream signaling and collagen IV expression. Transcriptomic profiling revealed high kisspeptin 1 (KISS1) related to reduced migration and low carboxylesterase 1 (CES1), to impaired survival in patient cells. A beneficial angiogenic response to potential therapies, FK506 and Elafin, was related to reduced slit guidance ligand 3 (SLIT3), an antimigratory factor. CONCLUSIONS: Despite the site of disease in the lung, our study indicates that induced pluripotent stem cell-derived endothelial cells are useful surrogates to uncover novel features related to disease mechanisms and to better match patients to therapies.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Expressão Gênica/genética , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/fisiopatologia , Células-Tronco Pluripotentes Induzidas , Adolescente , Adulto , Diferenciação Celular/genética , Células Cultivadas , Células Endoteliais/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Transdução de Sinais/genética
15.
J Neurosci ; 36(14): 3954-61, 2016 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-27053203

RESUMO

ATP-dependent chromatin remodeling proteins are being implicated increasingly in the regulation of complex behaviors, including models of several psychiatric disorders. Here, we demonstrate that Baz1b, an accessory subunit of the ISWI family of chromatin remodeling complexes, is upregulated in the nucleus accumbens (NAc), a key brain reward region, in both chronic cocaine-treated mice and mice that are resilient to chronic social defeat stress. In contrast, no regulation is seen in mice that are susceptible to this chronic stress. Viral-mediated overexpression of Baz1b, along with its associated subunit Smarca5, in mouse NAc is sufficient to potentiate both rewarding responses to cocaine, including cocaine self-administration, and resilience to chronic social defeat stress. However, despite these similar, proreward behavioral effects, genome-wide mapping of BAZ1B in NAc revealed mostly distinct subsets of genes regulated by these chromatin remodeling proteins after chronic exposure to either cocaine or social stress. Together, these findings suggest important roles for BAZ1B and its associated chromatin remodeling complexes in NAc in the regulation of reward behaviors to distinct emotional stimuli and highlight the stimulus-specific nature of the actions of these regulatory proteins. SIGNIFICANCE STATEMENT: We show that BAZ1B, a component of chromatin remodeling complexes, in the nucleus accumbens regulates reward-related behaviors in response to chronic exposure to both rewarding and aversive stimuli by regulating largely distinct subsets of genes.


Assuntos
Comportamento Animal/fisiologia , Emoções/fisiologia , Núcleo Accumbens/fisiologia , Recompensa , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Adenosina Trifosfatases/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , Cocaína/farmacologia , Epigênese Genética/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Ratos , Ratos Sprague-Dawley , Autoadministração , Meio Social , Estresse Psicológico
16.
Am J Pathol ; 186(9): 2500-14, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27456128

RESUMO

Reduced endothelial-pericyte interactions are linked to progressive small vessel loss in pulmonary arterial hypertension (PAH), but the molecular mechanisms underlying this disease remain poorly understood. To identify relevant gene candidates associated with aberrant pericyte behavior, we performed a transcriptome analysis of patient-derived donor control and PAH lung pericytes followed by functional genomics analysis. Compared with donor control cells, PAH pericytes had significant enrichment of genes involved in various metabolic processes, the top hit being PDK4, a gene coding for an enzyme that suppresses mitochondrial activity in favor of glycolysis. Given reports that link reduced mitochondrial activity with increased PAH cell proliferation, we hypothesized that increased PDK4 is associated with PAH pericyte hyperproliferation and reduced endothelial-pericyte interactions. We found that PDK4 gene and protein expression was significantly elevated in PAH pericytes and correlated with reduced mitochondrial metabolism, higher rates of glycolysis, and hyperproliferation. Importantly, reducing PDK4 levels restored mitochondrial metabolism, reduced cell proliferation, and improved endothelial-pericyte interactions. To our knowledge, this is the first study that documents significant differences in gene expression between human donor control and PAH lung pericytes and the link between mitochondrial dysfunction and aberrant endothelial-pericyte interactions in PAH. Comprehensive characterization of these candidate genes could provide novel therapeutic targets to improve endothelial-pericyte interactions and prevent small vessel loss in PAH.


Assuntos
Células Endoteliais/metabolismo , Hipertensão Pulmonar/patologia , Pericitos/metabolismo , Proteínas Serina-Treonina Quinases/biossíntese , Western Blotting , Citometria de Fluxo , Imunofluorescência , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Piruvato Desidrogenase Quinase de Transferência de Acetil , Transcriptoma
18.
Vaccines (Basel) ; 11(5)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37243113

RESUMO

China is relaxing COVID-19 measures from the "dynamic zero tolerance" (DZT) level. The "flatten-the-curve" (FTC) strategy, which decreases and maintains the low rate of infection to avoid overwhelming the healthcare system by adopting relaxed nonpharmaceutical interventions (NPIs) after the outbreak, has been perceived as the most appropriate and effective method in preventing the spread of the Omicron variant. Hence, we established an improved data-driven model of Omicron transmission based on the age-structured stochastic compartmental susceptible-latent-infectious-removed-susceptible model constructed by Cai to deduce the overall prevention effect throughout China. At the current level of immunity without the application of any NPIs, more than 1.27 billion (including asymptomatic individuals) were infected within 90 days. Moreover, the Omicron outbreak would result in 1.49 million deaths within 180 days. The application of FTC could decrease the number of deaths by 36.91% within 360 days. The strict implementation of FTC policy combined with completed vaccination and drug use, which only resulted in 0.19 million deaths in an age-stratified model, will help end the pandemic within about 240 days. The pandemic would be successfully controlled within a shorter period of time without a high fatality rate; therefore, the FTC policy could be strictly implemented through enhancement of immunity and drug use.

19.
Front Immunol ; 14: 1135657, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969161

RESUMO

Background: The immune microenvironment is of great significance in cervical cancer. However, there is still a lack of systematic research on the immune infiltration environment of cervical cancer. Methods: We obtained cervical cancer transcriptome data and clinical information from the Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases, evaluated the immune microenvironment of cervical cancer, determined immune subsets, constructed an immune cell infiltration scoring system, screened key immune-related genes, and performed single-cell data analysis and cell function analysis of key genes. Results: We combined the TCGA and GEO data sets and obtained three different immune cell populations. We obtained two gene clusters, extracted 119 differential genes, and established an immune cell infiltration (ICI) scoring system. Finally, three key genes, IL1B, CST7, and ITGA5, were identified, and single-cell sequencing data were mined to distribute these key genes in different cell types. By up-regulating CST7 and down-regulating IL1B and ITGA5, cervical cancer cells' proliferation ability and invasion ability were successfully reduced. Conclusion: We conducted a comprehensive assessment of the state of the tumor immune microenvironment in cervical cancer, constructed the ICI scoring system, and identified the ICI scoring system as a potential indicator of susceptibility to immunotherapy for cervical cancer, identifying key genes suggesting that IL1B, CST7, and ITGA5 play an essential role in cervical cancer.


Assuntos
Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/terapia , Imunoterapia , Prognóstico , Família Multigênica , Proliferação de Células , Microambiente Tumoral/genética
20.
J Clin Oncol ; 41(9): 1735-1746, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36473145

RESUMO

PURPOSE: Pembrolizumab or nivolumab plus chemotherapy was approved as a first-line treatment for high programmed cell death ligand 1 (PD-L1)-expressing esophageal squamous cell carcinoma (ESCC) by the European Medicines Agency, whereas the US Food and Drug Administration approved this regimen regardless of PD-L1 expression. The superiority of programmed death-1 (PD-1) antibody plus chemotherapy over chemotherapy alone in patients with low PD-L1-expressing ESCC remains debatable. METHODS: Post hoc analysis of the Chinese JUPITER-06 study focusing on efficacy stratified by PD-L1 tumor proportion score (TPS; using JS311 antibody) was conducted. Electronic databases were searched to identify eligible randomized controlled trials for meta-analysis. Study-level pooled analyses of hazard ratios (HRs) for overall survival and progression-free survival and odds ratios for objective response rate according to PD-L1 expression were performed. RESULTS: The post hoc analysis of JUPITER-06 showed more prominent clinical benefit with PD-1 antibody plus chemotherapy than with chemotherapy alone in both the high and low PD-L1-expressing subgroups. Five randomized controlled trials were included in the meta-analysis, and two PD-L1 expression scoring criteria, TPS (≥ 1%/< 1%) and combined positive score (CPS, ≥ 10/< 10), were analyzed. Significant overall survival benefit by adding PD-1 antibody to chemotherapy was observed in both the TPS < 1% (HR, 0.74; 95% CI, 0.56 to 0.97) and CPS < 10 (HR, 0.77; 95% CI, 0.66 to 0.89) subgroups. Similarly, significantly prolonged progression-free survival was observed in both the TPS < 1% (HR, 0.66; 95% CI, 0.50 to 0.86) and CPS < 10 (HR, 0.63; 95% CI, 0.47 to 0.84) subgroups. In addition, the objective response rate of the TPS < 1% subgroup was significantly improved (odds ratio, 1.71; 95% CI, 1.27 to 2.29). In all high PD-L1-expressing subgroups, the pooled benefit of PD-1 antibody plus chemotherapy was significantly better than that of chemotherapy. CONCLUSION: This study provided novel evidence supporting the superiority of PD-1 antibody plus chemotherapy to chemotherapy alone in patients with advanced ESCC with low PD-L1 expression. Further studies of predictive biomarkers are warranted.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Antígeno B7-H1/metabolismo , Receptor de Morte Celular Programada 1 , Neoplasias Esofágicas/tratamento farmacológico , Ligantes , Apoptose , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA