Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Medicina (Kaunas) ; 55(4)2019 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-30965645

RESUMO

Background and objectives: The popularity of table tennis has increased globally. As a result, the biomechanical movement patterns in the lower limb during table tennis have attracted extensive attention from coaches, scientists and athletes. The purpose of this study was to compare the differences between the long and short chasse steps in table tennis and evaluate risk factors related to injuries in the lower limb. Materials and Methods: Twelve male elite athletes performed forehand topspin strokes with long and short chasse steps in this study, respectively. The kinematics data of the lower-limb joints were measured by a Vicon motion analysis system. The electromyograms (EMG) of six lower-limb muscles were recorded using a myoelectricity system. Results: The key findings were that the angle change rate of the ankle in the long chasse step was faster with a larger range of motion (ROM) in the coronal and transverse planes. The hip was also faster in the sagittal and transverse planes but slower in the coronal plane compared with the short chasse step. In addition, the vastus medialis (VM) was the first activated muscle in the chasse step. Conclusions: The hip and ankle joints in the long chasse step and the knee joint in the short chasse step have higher susceptibility to injury. Moreover, tibialis anterior (TA), vastus medialis (VM) and gastrocnemius (GM) should be sufficiently stretched and warmed prior to playing table tennis. The results of this study may provide helpful guidance for teaching strategies and providing an understanding of potential sport injury mechanisms.


Assuntos
Desempenho Atlético/fisiologia , Extremidade Inferior/fisiologia , Tênis/lesões , Tênis/fisiologia , Adulto , Traumatismos do Tornozelo , Articulação do Tornozelo/fisiologia , Atletas , Fenômenos Biomecânicos , Eletromiografia , Lesões do Quadril , Articulação do Quadril/fisiologia , Humanos , Traumatismos do Joelho , Articulação do Joelho/fisiologia , Masculino , Músculo Esquelético/fisiologia , Músculo Quadríceps/fisiologia , Amplitude de Movimento Articular/fisiologia , Fatores de Risco , Exercício de Aquecimento/fisiologia , Adulto Jovem
2.
Healthcare (Basel) ; 11(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37174758

RESUMO

Topspin is one of the most attacking strokes in table tennis, and topspin forehand loop is an effective way to score. The aim of this study was to investigate the kinematics of the lower extremities in topspin forehand loop between different levels via OpenSim Musculoskeletal Modelling. Ten elite athletes (NL1) and ten medium athletes (NL2) performed the topspin forehand loop without muscle and joint injuries. An eight-camera Vicon motion capture system was used to measure the kinematics data. During the topspin forehand loop, the forward phase (FP) and the entire phase (EP) of the NL1 were significantly shorter than that of the NL2. In the sagittal plane, NL1 significantly had greater hip and ankle flexion and extension at range of motion (ROM) but less hip flexion and knee flexion at FP and less ankle flexion at BP than NL2. In the frontal plane, NL1 displayed less ROM in the hip joint and significantly less hip abduction ROM at the backward phase (BP). In the transverse plane, NL1 had a significantly greater ROM in the hip joint and displayed significantly less hip ROM at the BP. The level differences presented in this study could help table tennis athletes to improve performance and coaches to develop technical training.

3.
Healthcare (Basel) ; 11(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37174785

RESUMO

BACKGROUND: Although numerous studies have been conducted to investigate the acute effects of shoe drops on running kinematics and kinetic variables, their effects on muscle forces remain unknown. Thus, the primary aim of this study was to compare the muscle force, kinematics, and kinetic variables of habitually rearfoot runners with heel-to-toe drops of negative 8 mm shoes (minimalist shoes) and positive 9 mm shoes (normal shoes) during the running stance phase by using musculoskeletal modeling and simulation techniques. METHODS: Experimental data of lower limb kinematics, ground reaction force, and muscle activation from 16 healthy runners with rearfoot strike patterns were collected and analyzed in OpenSim. Using Matlab, the statistical parameter mapping paired t-test was used to compare the joint angle, moment, and muscle force waveform. RESULTS: The results revealed differences in the sagittal ankle and hip angles and sagittal knee moments between the different heel-to-toe drops of running shoes. Specifically, it showed that the negative 8 mm running shoes led to significantly smaller values than the positive 9 mm running shoes in terms of the angle of ankle dorsiflexion, ankle eversion, knee flexion, hip flexion, and hip internal and hip external rotation. The peak ankle dorsiflexion moment, ankle plantarflexion moment, ankle eversion moment, knee flexion moment, knee abduction moment, and knee internal rotation also decreased obviously with the minimalist running shoes, while the lateral gastrocnemius, Achilleas tendon, and extensor hallucis longus muscles were obviously greater in the minimalist shoes compared to normal shoes. The vastus medialis, vastus lateralis and extensor digitorum longus muscles force were smaller in the minimalist shoes. CONCLUSIONS: Runners may shift to a midfoot strike pattern when wearing negative running shoes. High muscle forces in the gastrocnemius lateral, Achilleas tendon, and flexor hallucis longus muscles may also indicate an increased risk of Achilleas tendonitis and ankle flexor injuries.

4.
Bioengineering (Basel) ; 9(8)2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35892748

RESUMO

The aim of this study is to review the valuable lower limb biomechanical contribution to table tennis topspin forehand. Databases included Scopus, PubMed, and Web of science. In this case, 19 articles were selected for the systematic review. The mechanics of the plantar, lower limb joints kinematics and kinetics, muscle activity, and racket-joint relationship are described through gender, performance level, and footwork. The study found that the hip movement characteristics and the hip muscle group activity following a proximal-to-distal sequence strategy significantly contributed to the maximum acceleration of the racket. Optimizing the motion strategy of the ankle and plantar as well as the ankle muscle group activity is beneficial for the transmission of energy in the kinetic chain. Muscle groups around the ankle and subtalar joints are heavily activated during landing to maintain foot stability during the landing phase. Lower limb muscle development plays an important role in movement control and stability as well as sports injury prevention in table tennis footwork during the performance of the topspin forehand. Furthermore, physical development levels and anatomical differences (such as hip and lower trunk muscle strength differences), maybe the main reasons for gender differences observed during the topspin forehand. Systematically summarizing this valuable information can contribute to athletes' and coaches' knowledge to enhance topspin forehand performance and training regimes. We suggest that future research could consider the joint contact forces, ball movement, and ball-racket impact during a performance of topspin forehand.

5.
Bioengineering (Basel) ; 9(6)2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35735489

RESUMO

With the progress and innovation of table tennis technology, individualized training programs may deserve special attention. This study aimed to analyze elite table tennis athletes in chasse-step, with a particular focus on sex-based biomechanical differences. A total of 36 (18 males and 18 females) elite table tennis athletes performed topspin forehand of chasse-step. Angles and moments of hip, knee, and ankle joints were calculated using OpenSim (v4.2) with marker trajectories and ground reaction forces were measured via Vicon motion capture system and AMTI in-ground force platform. Males had greater hip and knee flexion angles during the entire motion phase and greater internal rotation angles of the hip during the forward swing phase. The joint stiffness of knee in males was greater than females in the frontal plane. Females in the forward swing phase showed greater hip flexion, adduction, and internal rotation moments than males. It was suggested that the difference may be due to the limitation of anatomical structures in sexes. Male table tennis athletes should strengthen lower extremity muscle groups to improve performance, while female table tennis athletes should focus on hip joint groups to avoid injury. The sex differences presented in this study could help coaches and athletes to develop individualized training programs for table tennis.

6.
Healthcare (Basel) ; 9(6)2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34200563

RESUMO

The chasse step is one of the most important footwork maneuvers used in table tennis. The purpose of this study was to investigate the lower limb kinematic differences of table tennis athletes of different genders when using the chasse step. The 3D VICON motion analysis system was used to capture related kinematics data. The main finding of this study was that the step times for male athletes (MA) were shorter in the backward phase (BP) and significantly longer in the forward phase (FP) than for female athletes (FA) during the chasse step. Compared with FA, knee external rotation for MA was larger during the BP. MA showed a smaller knee flexion range of motion (ROM) in the BP and larger knee extension ROM in the FP. Moreover, hip flexion and adduction for MA were significantly greater than for FA. In the FP, the internal rotational velocity of the hip joint was significantly greater. MA showed larger hip internal rotation ROM in the FP but smaller hip external rotation ROM in the BP. The differences between genders can help coaches personalize their training programs and improve the performance of both male and female table tennis athletes.

7.
PeerJ ; 6: e6262, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30671292

RESUMO

BACKGROUND: Prior to the 2017 table tennis season, each participant performed the anterior, posteromedial, and posterolateral the star excursion balance test (SEBT) reach distances in a randomized order. The aim of this study was to assess the effects of table tennis multi-ball training and dynamic balance on performance measures of the SEBT for the male and female. METHODS: The limb lengths of the 12 table tennis athletes were measured bilaterally in the study. Besides warm-up end, the data of this study were recorded at a regular interval at approximately 16 min for the entire multi-ball training session, and they were defined as Phase I, Phase II, Phase II, respectively. The Borg rating of perceived exertion (RPE) scale was used to document the degree of physical strain. RESULTS: Reaching distances showed a decrease with training progression in all directions. Compared with the male table tennis athletes, the females showed poorer dynamic posture control, particularly when the free limb was considered with the right-leg stance toward posterolateral and posteromedial directions in phase I. DISCUSSION: This study suggests that during table tennis multi-ball training the male should have a regulatory protocol to compensate the deficit observed in phase II, but the females should be given the protocol in phase I.

8.
PeerJ ; 6: e4760, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29868250

RESUMO

BACKGROUND: The table tennis serve involves complex spatial movements combined with biomechanial characteristics. Although the differences in lower-limb biomechanial characteristics to a great extent influence the translational and spinning velocity of the ball when using the different styles of table tennis serve, few researchers have studied their mechanics. Therefore, the aim of this study was to investigate the differences in lower-limb activity between the squat and standing serves during a table tennis short serve. METHODS: Ten advanced female table tennis participants performed a squat serve and standing serve in random order. A Vicon motion analysis system and a Novel Pedar insole plantar pressure measurement system were used to record kinematics and kinetics data, respectively. RESULTS: Key findings from the study were that the squat serve not only showed significantly larger hip and knee flexion, as well as ankle dorsiflexion, it also showed significantly larger hip adduction and external knee rotation, with larger changing angular rate of the lower limb joints in the sagittal and the transverse planes when the two serving styles were compared. In addition, the force-time integral (FTI) was higher in the rear foot area for the standing serve. DISCUSSION: The results demonstrated that the squat serve needs higher lower limb drive during a table tennis short serve compared with a standing serve. These biomechanical considerations may be beneficial for table tennis athletes and coaches as a method of optimizing performance characteristics during both competition and training.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA