RESUMO
Exocytosis and endocytosis are tightly coupled. In addition to initiating exocytosis, Ca2+ plays critical roles in exocytosisendocytosis coupling in neurons and nonneuronal cells. Both positive and negative roles of Ca2+ in endocytosis have been reported; however, Ca2+ inhibition in endocytosis remains debatable with unknown mechanisms. Here, we show that synaptotagmin-1 (Syt1), the primary Ca2+ sensor initiating exocytosis, plays bidirectional and opposite roles in exocytosisendocytosis coupling by promoting slow, small-sized clathrin-mediated endocytosis but inhibiting fast, large-sized bulk endocytosis. Ca2+-binding ability is required for Syt1 to regulate both types of endocytic pathways, the disruption of which leads to inefficient vesicle recycling under mild stimulation and excessive membrane retrieval following intense stimulation. Ca2+-dependent membrane tubulation may explain the opposite endocytic roles of Syt1 and provides a general membrane-remodeling working model for endocytosis determination. Thus, Syt1 is a primary bidirectional Ca2+ sensor facilitating clathrin-mediated endocytosis but clamping bulk endocytosis, probably by manipulating membrane curvature to ensure both efficient and precise coupling of endocytosis to exocytosis.
Assuntos
Endocitose , Transmissão Sináptica , Sinaptotagmina I , Cálcio/metabolismo , Endocitose/fisiologia , Exocitose/fisiologia , Neurônios/metabolismo , Sinaptotagmina I/metabolismoRESUMO
Helicobacter pylori (H. pylori) is a common pathogen that infects more than half of the world's population. Its infection can not only lead to a variety of gastrointestinal diseases, such as chronic gastritis and gastric cancer (GC) but also be associated with many extra-gastrointestinal diseases. Exosomes, as a new intercellular information transmission medium, can carry biological signal molecules such as microRNAs (miRNAs) to regulate a variety of cellular physiological activities and are involved in multiple cancer processes. In this article, we provide a systematic review on the role of exosomal miRNAs in H. pylori-associated GC.
Assuntos
Exossomos , Infecções por Helicobacter , MicroRNAs , Neoplasias Gástricas , Humanos , Exossomos/genética , Mucosa Gástrica , Infecções por Helicobacter/genética , Infecções por Helicobacter/complicações , Helicobacter pylori , MicroRNAs/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/microbiologiaRESUMO
BACKGROUND: Gastric cancer is heterogeneous cancer and the causes of this disease are complex. New diagnostic and therapeutic targets are urgently needed to explore. Huntingtin-associated protein 1 (HAP1) is directly related to Huntington's disease (HD). However, patients with Huntington's disease have a lower incidence of cancer. Therefore, we are committed to studying the correlation between HAP1 and gastric carcinogenesis and development. METHODS AND RESULTS: Immunohistochemical staining, western blot analysis, and RT-qPCR were conducted to explore the localization and expression of HAP1 in gastric cancer. To study the biological significance of HAP1, we overexpressed HAP1 in both MKN28 and AGS cell lines by lentivirus infection. To explore the role of HAP1 in cell proliferation, the cells counting assay, EdU incorporation assay, and colony formation assay were carried out. We performed the wound healing assay and transwell assay to study the cell migration and invasion. To further investigate whether HAP1 could regulate gastric cancer cell death during glucose deprivation, Annexin V-FITC/PI staining was performed. In our study, we elucidated that HAP1 was downregulated in gastric cancer. What's more, overexpressing HAP1 inhibited cell proliferation, cell migration and invasion, and triggered apoptosis during glucose deprivation. More importantly, the antitumor properties and mechanisms of HAP1 have been elucidated further in gastric cancer. CONCLUSIONS: Taken together, the available evidence implies that HAP1 may serve as a potential tumor suppressor, making it a significant target in preventing and treating gastric cancer. This research provides a theoretical basis for the early diagnosis, clinical targeted therapy, and prognosis evaluation of gastric cancer.
Assuntos
Doença de Huntington , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Proteínas do Tecido Nervoso/metabolismo , Doença de Huntington/metabolismo , Apoptose/genética , Morte Celular , Proliferação de Células/genética , Linhagem Celular TumoralRESUMO
Krüppel-like factor 7 (KLF7) is a negative regulator of preadipocyte differentiation. Our previous KLF7 ChIP-seq analysis showed that the binding motif of PU.1 was found among the KLF7 binding peaks, indicating that an interaction between KLF7 and PU.1 at preadipocyte gene promoters and other regulatory elements might be common. Here, Co-IP and FRET assays are used to confirm that PU.1 can directly bind to KLF7 and enhance the transcription activity of cyclin-dependent kinase inhibitor 3 ( CDKN3), which is a downstream target gene of KLF7. We show that the PU.1 expression level is decreased during preadipocyte differentiation. Furthermore, PU.1 overexpression and knockdown experiments reveal that PU.1 negatively regulates chicken preadipocyte differentiation, as evidenced by appropriate changes in lipid droplet accumulation and altered expressions of PPARγ, FAS, and PLIN. In addition, PU.1 overexpression promotes preadipocyte proliferation, while knockdown of PU. 1 inhibits preadipocyte proliferation. We further demonstrate that PU.1 inhibits differentiation and promotes proliferation in preadipocytes, in part by directly interacting with KLF7.
Assuntos
Galinhas , Fatores de Transcrição Kruppel-Like , Animais , Diferenciação Celular , Proliferação de Células/fisiologia , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismoRESUMO
BACKGROUND: The purpose of this article is to discuss the statistical methods for agreement analysis used in Richelle's article (BMC Med Educ 22:335, 2022). The authors investigated the attitudes of final-year medical students regarding substance use during pregnancy and identified the factors that influence these attitudes. METHODS: We found that Cohen's kappa value for measuring the agreement between these medical students' attitudes towards drugs/alcohol use during pregnancy was questionable. In addition, we recommend using weighted kappa instead of Cohen's kappa for agreement analysis at the presence of three categories. RESULTS: The agreement improved from "good" (Cohen's kappa) to "very good" (weighted kappa) for medical students' attitudes towards drugs/alcohol use during pregnancy. CONCLUSION: To conclude, we recognize that this does not significantly alter the conclusions of the Richelle et al. paper, but it is necessary to ensure that the appropriate statistical tools are used.
Assuntos
Estudantes de Medicina , Transtornos Relacionados ao Uso de Substâncias , Humanos , Gravidez , Feminino , Reprodutibilidade dos TestesRESUMO
Krüppel-like transcription factor 7 (KLF7) promotes preadipocyte proliferation; however, its target gene in this process has not yet been identified. Using KLF7 ChIP-seq analysis, we previously showed that a KLF7-binding peak is present upstream of the cyclin-dependent kinase inhibitor 3 gene ( CDKN3) in chicken preadipocytes. In the present study, we identify CDKN3 as a target gene of KLF7 that mediates the effects of KLF7 on preadipocyte proliferation. Furthermore, 5'-truncating mutation analysis shows that the minimal promoter is located between nt -160 and nt -7 (relative to the translation initiation codon ATG) of CDKN3. KLF7 overexpression increases CDKN3 promoter activity in the DF-1 and immortalized chicken preadipocyte (ICP1) cell lines. Deletion of the putative binding site of KLF7 abolishes the promotive effect of KLF7 overexpression on CDKN3 promoter activity. Moreover, CDKN3 knockdown and overexpression assays reveal that CDKN3 enhances ICP1 cell proliferation. Flow cytometry analysis shows that CDKN3 accelerates the G1/S transition. Furthermore, we find that KLF7 promotes ICP1 cell proliferation via Akt phosphorylation by regulating CDKN3. Taken together, our results suggest that KLF7 promotes preadipocyte proliferation by activating the Akt signaling pathway by cis-regulating CDKN3, thus driving the G1/S transition.
Assuntos
Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Transdução de Sinais/fisiologia , Proliferação de Células/genética , Linhagem Celular , Fatores de Transcrição Kruppel-Like/genéticaRESUMO
Corn peptide (CP) is a small, natural, biologically active peptide obtained by protease-catalysed hydrolysis of corn. CP exerts antihypertensive, hypoglycaemic, antihyperlipidemic, antioxidant, and antitumor effects, as well as prevents cardiovascular and cerebrovascular diseases. Although CP plays a role in preventing obesity-related diseases, its role in reducing obesity has not yet been determined. In this study, we analysed the inhibitory effects of CP on lipid droplet accumulation in 3T3-L1 preadipocytes and high-fat diet (HFD)-induced C57BL/6J Obese Mice. The results show that CP could inhibit preadipocyte differentiation and oil accumulation in 3T3-L1 preadipocytes. Oral CP administration reduced serum triglyceride (TG) content, epididymal fat weight, abnormal liver fat droplet accumulation, and C/EBPα expression. Furthermore, combination of CP administration and exercise reduced body, liver, and adipose tissue weights; decreased serum total cholesterol (TC), triglyceride and low-density lipoprotein (LDL) levels; and inhibited hepatic lipid droplet accumulations and epididymal fat cell hypertrophy. Additionally, this combination inhibited the expression of transcription factors, C/EBPα, C/EBPß, and PPARγ, and adipogenic factors, FABP4 in mice. In conclusion, oral administration of CP inhibited lipid droplet accumulation and counteracted HFD-induced obesity in mice.
Assuntos
Fármacos Antiobesidade , Obesidade , Doenças dos Roedores , Camundongos , Animais , Camundongos Obesos , Zea mays , Fármacos Antiobesidade/metabolismo , Fármacos Antiobesidade/farmacologia , Células 3T3-L1 , Adipócitos/metabolismo , Adipócitos/patologia , Camundongos Endogâmicos C57BL , Ração Animal/análise , Obesidade/metabolismo , Obesidade/prevenção & controle , Obesidade/veterinária , Triglicerídeos/metabolismo , Triglicerídeos/farmacologia , Dieta Hiperlipídica , Peptídeos/metabolismo , Peptídeos/farmacologia , Doenças dos Roedores/metabolismo , Doenças dos Roedores/patologiaRESUMO
Helicobater pylori (H. pylori) is the most important bacteria known to be associated with various gastroduodenal diseases. virB11 gene is a structural gene of tfs3a genes cluster in the plasticity region of H. pylori. In this study, the structure and biology of virB11 gene were analyzed and elucidated with bioinformatics analysis. After cloning, expression and purification, VirB11 protein was generated for the cytotoxicity to GES-1 cells and the anti-VirB11 protein antibody production for localization and interaction proteins analysis. The results showed that VirB11 protein is a hydrophilic protein, mainly locates in cell membrane. IL-8 productions from GES-1 cells co-culture with VirB11 protein were increased gradually with time (p < 0.001). The interaction proteins of VirB11 protein were F0F1 ATP synthase subunit alpha, ATP synthase subunit beta and isocitrate dehydrogenase. We demonstrate that VirB11 protein possesses cytotoxicity and potentially plays important roles in ATP metabolism to provide energy in the course of H. pylori infection.
RESUMO
4-Coumaric acid: coenzyme A ligase (4CL) is a key enzyme in the phenylpropanoid metabolic pathway that regulates the biosynthesis of lignin and flavonoids. Therefore, the study of 4CL is important to explore the accumulation and regulation of metabolites. This study investigated the role that the 4CL2 gene from Dryopteris fragrans (Df4CL2) plays in the metabolite synthesis. Changes in gene expression, enzyme activity, and the content of lignin and flavonoids were measured in different tissues of tobacco as model plant that was successfully transferred with Df4CL2. Tobacco plants with Df4CL2 (transgenic tobacco, TT) were successfully obtained via the Agrobacterium-transformation method. This TT tended to be thicker and had an earlier flowering period than wild type tobacco (WT). The expression levels of Df4CL2 were higher in the stem, leaf, and root in TT compared to WT. In addition, compared to WT, TT had higher 4CL enzyme activity and higher lignin and flavonoids contents. This suggests that Df4CL2 is involved in the synthesis of lignin and flavonoids in D. fragrans. This research provides important evidence toward understanding the phenylpropanoid metabolic pathway in ferns.
RESUMO
The transcription factor, early growth response 1 (EGR1), has important roles in various cell types in response to different stimuli. EGR1 is thought to be involved in differentiation of bovine skeletal muscle-derived satellite cells (MDSCs); however, the precise effects of EGR1 on differentiation of MDSCs and its mechanism of action remain unknown. In the present study, a time course of EGR1 expression and the effects of EGR1 on MDSC differentiation were determined. The results demonstrated that the expression of EGR1 mRNA and protein increased significantly in differentiating MDSCs relative to that in proliferating cells. Over-expression of the EGR1 gene in MDSCs promoted their differentiation and inhibited proliferation. Conversely, knock-down of EGR1 inhibited differentiation of MDSCs and promoted their proliferation, indicating that EGR1 promotes MDSC differentiation. Moreover, over-expression of EGR1 in MDSCs increased the expression of MyoG mRNA and protein, whereas its knock-down had the opposite effect. Furthermore, ChIP-PCR analyses demonstrated that EGR1 could bind directly to its putative binding site within the promoter region of MyoG, and determination of ERG1 subcellular localization in MDSCs demonstrated that it could relocate to the nucleus, indicating MyoG is likely an EGR1 target gene whose expression is positively regulated by this transcription factor. In conclusion, EGR1 can promote MDSC differentiation through positive regulation of MyoG gene expression.
Assuntos
Diferenciação Celular , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Desenvolvimento Muscular , Miogenina/metabolismo , Células Satélites de Músculo Esquelético/metabolismo , Animais , Sítios de Ligação , Sistemas CRISPR-Cas , Bovinos , Núcleo Celular/metabolismo , Proliferação de Células , Células Cultivadas , Biologia Computacional , Bases de Dados Genéticas , Proteína 1 de Resposta de Crescimento Precoce/genética , Regulação da Expressão Gênica no Desenvolvimento , Miogenina/genética , Regiões Promotoras Genéticas , Ligação Proteica , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Fatores de Tempo , TransfecçãoRESUMO
Muscovy duck parvovirus (MDPV) infection is widespread in many Muscovy-duck-farming countries, leading to a huge economic loss. By means of overlapping peptides expressed in Escherichia coli in combination with Western blot, antigenic domains on the non-structural protein (NSP) of MDPV were identified for the first time. On the Western blot, the fragments NS(481-510), NS (501-530), NS (521-550), NS (541-570), NS (561-590), NS (581-610) and NS (601-627) were positive (the numbers in parentheses indicate the location of amino acids), and other fragments were negative. These seven fragments were also reactive in an indirect enzyme-linked immunosorbent assay (i-ELISA). We therefore conclude that a linear antigenic domain of the NSP is located at its C-terminal end (amino acid residues 481-627). These results may facilitate future investigations into the function of NSP of MDPV and the development of immunoassays for the diagnosis of MDPV infection.
Assuntos
Infecções por Parvoviridae/veterinária , Parvovirus/imunologia , Doenças das Aves Domésticas/virologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/imunologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Anticorpos Antivirais/imunologia , Patos , Mapeamento de Epitopos , Dados de Sequência Molecular , Infecções por Parvoviridae/imunologia , Infecções por Parvoviridae/virologia , Parvovirus/química , Parvovirus/genética , Parvovirus/isolamento & purificação , Doenças das Aves Domésticas/imunologia , Alinhamento de Sequência , Proteínas não Estruturais Virais/genéticaRESUMO
A cDNA encoding for a laccase was isolated from the white-rot fungus Lenzites gibbosa by RT-PCR and expressed in the Pichia pastoris. The laccase native signal peptide efficiently directed the secretion of the recombinant laccase in an active form. Factors influencing laccase expression, such as pH, cultivation temperature, copper concentration and methanol concentration, were optimized. The recombinant enzyme was purified to electrophoretic homogeneity, and was estimated to have a MW of ~61.5 kDa. The purified enzyme behaved similarly to the native laccase produced by L. gibbosa and efficiently decolorized Alizarin Red, Neutral Red, Congo Red and Crystal Violet, without the addition of redox mediators. The decolorization capacity of this recombinant enzyme suggests that it could be a useful biocatalyst for the treatment of dye-containing effluents. This study is the first report on the synthetic dye decolorization by a recombinant L. gibbosa laccase.
Assuntos
Antraquinonas/análise , Corantes/análise , Lacase/metabolismo , Pichia/metabolismo , Proteínas Recombinantes/metabolismo , Antraquinonas/química , Antraquinonas/metabolismo , Biodegradação Ambiental , Corantes/química , Corantes/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Proteínas Fúngicas/metabolismo , Lacase/genética , Lacase/isolamento & purificação , Polyporaceae/enzimologia , Polyporaceae/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificaçãoRESUMO
Helicobacter pylori, a Gram-negative microaerobic bacteria belonging to the phylum Proteobacteria, can colonize in the stomach and duodenum, and cause a series of gastrointestinal diseases such as gastritis, gastric ulcer and even gastric cancer. At present, the high diversity of the microorganisms in the stomach has been confirmed with culture-independent methods; some researchers have also studied the stomach microbiota composition at different stages of H. pylori carcinogenesis. Here, we mainly review the possible role of H. pylori-mediated microbiota changes in the occurrence and development of gastric cancer to provide new ideas for preventing H. pylori infection and regulating microecological imbalance.
Assuntos
Infecções por Helicobacter , Helicobacter pylori , Microbiota , Neoplasias Gástricas , Humanos , Helicobacter pylori/genética , Neoplasias Gástricas/microbiologia , Infecções por Helicobacter/microbiologia , HomeostaseRESUMO
Krüppel-like factor 7 (KLF7) negatively regulates adipocyte differentiation; however, the mechanism underlying its activity in mammals and birds remains poorly understood. To identify genome-wide KLF7-binding motifs in preadipocytes, we conducted a chromatin immunoprecipitation-sequencing analysis of immortalized chicken preadipocytes (ICP2), which revealed 11,063 specific binding sites. Intergenic binding site analysis showed that KLF7 regulates several novel factors whose functions in chicken and mammal adipogenesis are underexplored. We identified a novel regulator, troponin I2 (TNNI2), which is positively regulated by KLF7. TNNI2 is downregulated during preadipocyte differentiation and acts as an adipogenic repressor at least in part by repressing FABP4 promoter activity. In conclusion, we demonstrated that KLF7 functions through cis-regulation of TNNI2, which inhibits adipogenesis. Our findings not only provide the first genome-wide picture of KLF7 associations in preadipocytes but also identify a novel function of TNNI2.
Assuntos
Galinhas , Troponina I , Animais , Adipogenia/genética , Galinhas/genética , Galinhas/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Mamíferos/metabolismo , Regiões Promotoras Genéticas , Troponina I/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismoRESUMO
This paper was aimed to study conserved motifs of voltage sensing proteins (VSPs) and establish a voltage sensing model. All VSPs were collected from the Uniprot database using a comprehensive keyword search followed by manual curation, and the results indicated that there are only two types of known VSPs, voltage gated ion channels and voltage dependent phosphatases. All the VSPs have a common domain of four helical transmembrane segments (TMS, S1-S4), which constitute the voltage sensing module of the VSPs. The S1 segment was shown to be responsible for membrane targeting and insertion of these proteins, while S2-S4 segments, which can sense membrane potential, for protein properties. Conserved motifs/residues and their functional significance of each TMS were identified using profile-to-profile sequence alignments. Conserved motifs in these four segments are strikingly similar for all VSPs, especially, the conserved motif [RK]-X(2)-R-X(2)-R-X(2)-[RK] was presented in all the S4 segments, with positively charged arginine (R) alternating with two hydrophobic or uncharged residues. Movement of these arginines across the membrane electric field is the core mechanism by which the VSPs detect changes in membrane potential. The negatively charged aspartate (D) in the S3 segment is universally conserved in all the VSPs, suggesting that the aspartate residue may be involved in voltage sensing properties of VSPs as well as the electrostatic interactions with the positively charged residues in the S4 segment, which may enhance the thermodynamic stability of the S4 segments in plasma membrane.
Assuntos
Canais Iônicos/química , Potenciais da Membrana , Estrutura Terciária de Proteína , Arginina/química , Ácido Aspártico/química , Membrana Celular/fisiologia , Sequência Conservada , Ativação do Canal IônicoRESUMO
Cytidine triphosphate synthase (CTPS) forms filamentous structures termed cytoophidia in numerous types of cell. Toosendanin (TSN) is a tetracyclic triterpenoid and induces CTPS to form cytoophidia in MKN45 cells. However, the effects of CTPS cytoophidia on the proliferation and apoptosis of human gastric cancer cells remain poorly understood. In the present study, CTPSoverexpression and R294DCTPS mutant vectors were generated to assess the effect of CTPS cytoophidia on the proliferation and apoptosis of gastric cancer MKN45 cells. Formation of CTPS cytoophidia significantly inhibited MKN45 cell proliferation (evaluated using EdU incorporation assay), significantly blocked the cell cycle in G1 phase (assessed using flow cytometry) and significantly decreased mRNA and protein expression levels of cyclin D1 (assessed by reverse transcriptionquantitative PCR and western blotting, respectively). Furthermore, the number of apoptotic bodies and apoptosis rate were markedly elevated and mitochondrial membrane potential was markedly decreased. Moreover, mRNA and protein expression levels of Bax increased and Bcl2 decreased markedly in MKN45 cells following transfection with the CTPSoverexpression vector. The proliferation rate increased, percentage of G1/G0phase cells decreased and apoptosis was attenuated in cells transfected with the R294DCTPS mutant vector and this mutation did not lead to formation of cytoophidia. The results of the present study suggested that formation of CTPS cytoophidia inhibited proliferation and promoted apoptosis in MKN45 cells. These results may provide insights into the role of CTPS cytoophidia in cancer cell proliferation and apoptosis.
Assuntos
Neoplasias Gástricas , Humanos , Apoptose/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células , Citidina Trifosfato/metabolismo , RNA Mensageiro , Neoplasias Gástricas/genética , TriterpenosRESUMO
OBJECTIVE: To investigate the effects of down-regulating MDR1 gene expression by CRISPRi on enhancing the sensitivity of lung adenocarcinoma A549/DDP cells to cisplatin. METHODS: The potential CRISPRi interference sites on the MDR1 gene promoter were predicted by bioinformatics software, and the interference fragments were designed and constructed. The mRNA and protein expression levels of MDR1 gene in each group of cells were detected by qRT-PCR and Western blot methods, and the recombinant vectors with high interference efficiency were screened. Human lung cancer A549/DDP cells were divided into three groups: A549/DDP, Scrambed and sgRNA-MDR1-1, with three multiple holes in each group. After each vector was transfected into the cells for 48 h, the efflux of cells in each group was detected by flow cytometry, the IC50 value of cells in each group was detected by MTT method, and the cell morphology of cells treated with cisplatin was observed under laser confocal microscope. RESULTS: After sequencing and comparison, two kinds of CRISPRi recombinant vectors interfering with MDR1 gene transcription were constructed successfully. After transfection of A549/DDP cells, the mRNA and protein levels of MDR1 gene in all transfection groups were decreased significantly (Pï¼ 0.01). Among them, the interference efficiency of sgRNA-MDR1-1 was the highest, and the interference efficiency of mRNA and protein was 60% and 51%, respectively. After transfection of sgRNA-MDR1-1 vector, compared with the control group, the efflux ability of cells was decreased (Pï¼0.01), the IC50 value of cells to cisplatin was decreased significantly (Pï¼0.01), and the intracellular chromatin gathered and marginalized, and apoptotic bodies appeared. CONCLUSION: CRISPRi interference with MDR1 gene in drug-resistant A549/DDP cells can significantly enhance the sensitivity to cisplatin.
Assuntos
Adenocarcinoma de Pulmão , Antineoplásicos , Neoplasias Pulmonares , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Antineoplásicos/farmacologia , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Apoptose , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , RNA Mensageiro , Expressão GênicaRESUMO
Objective: To investigate the effect of SIX2 gene on the proliferation of bovine skeletal muscle satellite cells. Methods: Bovine skeletal muscle satellite cells were used as experimental materials, and the expression of SIX2 gene in bovine skeletal muscle satellite cells was detected by real-time quantitative PCR at 24 h, 48 h, and 72 h of proliferation. The SIX2 gene overexpression vector was constructed by homologous recombination. The SIX2 gene overexpression plasmid and the control empty plasmid were transfected into bovine skeletal muscle satellite cells, and each group had three complex Wells. The cell viability was detected by MTT assay at 24 h, 48 h and 72 h after transfection. At 48 h after transfection, the cell cycle was detected by flow cytometry, and the expressions of cell proliferation marker genes were detected by real-time quantitative PCR (qRT-PCR) and Western blot. Results: With the proliferation of bovine skeletal muscle satellite cells, the expression of SIX2 mRNA was increased. Compared with the control group, the expressions of SIX2 mRNA and protein in the SIX2 gene overexpression plasmid group were increased by 18 and 2.6 times, respectively (Pï¼0.01). The cell viability of the SIX2 gene overexpression plasmid group was increased (Pï¼0.01), the proportion of G1 cells was decreased by 24.6%, and the proportion of S phase and G2 phase cells was increased by 20.3% and 4.31%, respectively (Pï¼0.01). The mRNA and protein expressions of Pax7 gene were increased by 15.84 and 1.22 times, respectively, and the mRNA and protein expressions of proliferation marker genes PCNA and CCNB1 were increased by 4.82, 2.23,1.55 and 1.46 times, respectively (Pï¼0.01). Conclusion: Overexpression of SIX2 gene promotes the proliferation of bovine skeletal muscle satellite cells.
Assuntos
Células Satélites de Músculo Esquelético , Bovinos , Animais , Ciclo Celular , Proliferação de Células , RNA Mensageiro , Fatores de TranscriçãoRESUMO
The human gut microbiota play essential roles in metabolism and human health, especially by enzymatically utilizing dietary fiber that the host cannot directly digest and releasing functional components including short-chain fatty acids (SCFAs) and hydroxycinnamic acids (e.g., ferulic acid). In our previous study, seven potential feruloyl esterase (FAE) genes were identified from the gut microbiota. In the current work, one of the genes encoding a novel FAE (DfFAE) from Dorea formicigenerans of Firmicutes was bacterially expressed, purified and characterized. The 30.5 kDa type-A DfFAE has an optimum pH and temperature of 8.4 and 40 °C, respectively, exhibiting a higher substrate specificity toward short-chain acyl-ester substrate (pNPA). The AlphaFold2 based ab initio structural modeling revealed a five α-helices cap domain that shaped an unusually narrow and deep active site pocket containing a specific substrate access tunnel in DfFAE. Furthermore, rational design strategy was subjected to the active site pocket in an aim of improving its enzymatic activities. The mutants V252A, N156A, W255A, P149A, and P186A showed 1.8 to 5.7-fold increase in catalytic efficiency toward pNPA, while W255A also exhibited altered substrate preference toward long-chain substrate pNPO (45.5-fold). This study highlighted an unusual active site architecture in DfFAE that influenced its substrate selectivity and illustrated the applicability of rational design for enhanced enzymatic properties.
RESUMO
pIRES2-EGFP was employed and a non-target shRNA expressing plasmid was constructed to simulate overexpression and RNAi (RNA interference) experiments. Transfection of pIRES2-EGFP into HEK293A cells by cationic lipids VigoFect demonstrated that transfection efficiency increased in a dose-dependent manner with amount of DNA plasmid used, and optimal transfection time and cell density should be identified to reach a compromise of higher transfection efficiency and lower toxicity. Co-transfection experiments indicated that the two co-transfected plasmids were equivalently delivered into the same cells, and the co-transfection efficiency was rarely affected by cell density and proportion of the two plasmids. However, plasmid-receipted cells seemed indisposed to accept plasmid again during the second transfection, and very low co-transfection efficiency was observed in tandem transfection.