Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Fish Shellfish Immunol ; 151: 109732, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38944252

RESUMO

Infectious pancreatic necrosis virus (IPNV) is an important pathogen that is threatening the worldwide salmon and trout industry. But there is no therapeutic drug available for now. In this study, we demonstrate that MK-0608 is highly efficient against IPNV and low cytotoxic, with a 50 % effective concentration (EC50) of 0.20 µM and selectivity index (SI) of about 268. Time of addition assay illustrated that MK-0608 targeted the early stage of IPNV life cycle. Furthermore, we found that MK-0608 blocked IPNV attachment on the premise of sufficient pre-incubation time but MK-0608 did not influence viral internalization and release. MK-0608 could inhibit IPNV genome synthesis, and combination with ribavirin enhanced the inhibition effect, which might be functional via binding to IPNV RNA dependent RNA polymerase (RdRp), which was predicted by using molecular docking methods. In vivo test showed that IPNV was extremely suppressed in the rainbow trout (Oncorhynchus mykiss) with one single dose of MK-0608, and the higher dosage of 50 mg/kg could cause 3 log decrease of IPNV loads in fish tissues.


Assuntos
Antivirais , Infecções por Birnaviridae , Doenças dos Peixes , Vírus da Necrose Pancreática Infecciosa , Oncorhynchus mykiss , Replicação Viral , Vírus da Necrose Pancreática Infecciosa/fisiologia , Vírus da Necrose Pancreática Infecciosa/efeitos dos fármacos , Animais , Doenças dos Peixes/virologia , Infecções por Birnaviridae/veterinária , Infecções por Birnaviridae/virologia , Replicação Viral/efeitos dos fármacos , Antivirais/farmacologia , RNA Viral/genética , Replicação do RNA
2.
Int J Mol Sci ; 25(1)2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38203479

RESUMO

Infectious hematopoietic necrosis virus (IHNV) is an important pathogen that causes significant economic losses to salmon trout farming. Although vaccines have been invented for the treatment of IHNV, findings from our previous survey show that breeding enterprises and farmers require effective oral drugs or immune enhancers. However, studies on the development of oral drugs are limited. In the present study, we used bioinformatics methods to predict the protein targets of andrographolide (Andro) in IHNV. Cells were infected with IHNV, and the effect of andrographolide was explored by evaluating the expression levels of genes implicated in oxidative stress, activities of antioxidant enzymes, and the expression of genes implicated in apoptosis and necrosis. In the present study, cells were divided into NC, IHNV, IHNV+10 µM andrographolide, and IHNV+20 µM andrographolide groups. qRT-PCR was performed to determine the expression level of genes, and an antioxidant enzyme detection kit was used to evaluate the activities of antioxidant enzymes. Fluorescent staining was performed using a reactive oxygen species detection kit (ROS) and Hoechst 33342/PI double staining kit, and the mechanism of alleviation of apoptosis and oxidative stress andrographolide after IHNV infection was determined. The results indicated that andrographolide inhibits viral growth by binding to the NV protein of IHNV and increasing the antioxidant capacity of the body through the CTSK/BCL2/Cytc axis, thereby inhibiting the occurrence of IHNV-induced apoptosis. This is the first study to explore the antagonistic mechanism of action of andrographolide in alleviating IHNV infection. The results provide valuable information on alternative strategies for the treatment of IHNV infection during salmon family and provide a reference for the use of andrographolide as an antioxidant agent in agricultural settings.


Assuntos
Antioxidantes , Diterpenos , Vírus da Necrose Hematopoética Infecciosa , Antioxidantes/farmacologia , Estresse Oxidativo , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/genética
3.
Microbiol Spectr ; 12(3): e0501622, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38289115

RESUMO

Infectious hematopoietic necrosis virus (IHNV) causes infectious hematopoietic necrosis and severe economic losses to salmon and trout aquaculture worldwide. Currently, the only commercial vaccine against IHNV is a DNA vaccine with some biosafety concerns. Hence, more effective vaccines and antiviral drugs are needed to prevent IHNV infection. In this study, 1,483 compounds were screened from a traditional Chinese medicine monomer library, and bufalin showed potential antiviral activity against IHNV. The 50% cytotoxic concentration of bufalin was >20 µM, and the 50% inhibitory concentration was 0.1223 µΜ against IHNV. Bufalin showed the inhibition of diverse IHNV strains in vitro, which confirmed that it had an inhibitory effect against all IHNV strains, rather than random activity against a single strain. The bufalin-mediated block of IHNV infection occurred at the viral attachment and RNA replication stages, but not internalization. Bufalin also inhibited IHNV infection in vivo and significantly increased the survival of rainbow trout compared with the mock drug-treated group, and this was confirmed by in vivo viral load monitoring. Our data showed that the anti-IHNV activity of bufalin was proportional to extracellular Na+ concentration and inversely proportional to extracellular K+ concentration, and bufalin may inhibit IHNV infection by targeting Na+/K+-ATPase. The in vitro and in vivo studies showed that bufalin significantly inhibited IHNV infection and may be a promising candidate drug against the disease in rainbow trout. IMPORTANCE: Infectious hematopoietic necrosis virus (IHNV) is the pathogen of infectious hematopoietic necrosis (IHN) which outbreak often causes huge economic losses and hampers the healthy development of salmon and trout farming. Currently, there is only one approved DNA vaccine for IHN worldwide, but it faces some biosafety problems. Hence, more effective vaccines and antiviral drugs are needed to prevent IHNV infection. In this study, we report that bufalin, a traditional Chinese medicine, shows potential antiviral activity against IHNV both in vitro and in vivo. The bufalin-mediated block of IHNV infection occurred at the viral attachment and RNA replication stages, but not internalization, and bufalin inhibited IHNV infection by targeting Na+/K+-ATPase. The in vitro and in vivo studies showed that bufalin significantly inhibited IHNV infection and may be a promising candidate drug against the disease in rainbow trout.


Assuntos
Bufanolídeos , Doenças dos Peixes , Vírus da Necrose Hematopoética Infecciosa , Oncorhynchus mykiss , Vacinas de DNA , Animais , Vírus da Necrose Hematopoética Infecciosa/genética , Medicina Tradicional Chinesa , Antivirais/farmacologia , Antivirais/uso terapêutico , Adenosina Trifosfatases , Necrose , Doenças dos Peixes/tratamento farmacológico , Doenças dos Peixes/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA