Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bull Environ Contam Toxicol ; 105(1): 166-172, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32564099

RESUMO

The growth response, tolerance, and enrichment characteristics of six ornamental species, Chlorophytum comosum, Calendula officinalis, Iris lacteal, Belamcanda chinensis, Saponaria officinalis, and Polygonum lapathifolium were studied under hydroponic culture with lead (Pb) concentrations ranging from 0 to 1000 mg/L. The results showed that the growth of the tested ornamental species under Pb stress was inhibited. Belamcanda chinensis presented the largest tolerance index (0.75), and Calendula officinalis had the highest toxicity threshold (500 mg/L) under Pb stress. The highest Pb contents in the shoots were detected in Iris lacteal and Belamcanda chinensis. The enrichment coefficients in the shoots of Iris lacteal and Belamcanda chinensis were significantly higher than those in the other ornamental species. In conclusion, Iris lacteal and Belamcanda chinensis are the most tolerant and have the greatest Pb enrichment and translocation abilities under Pb stress, and thus, they have a strong potential to restore Pb-contaminated water bodies and soils.


Assuntos
Biodegradação Ambiental , Hidroponia , Chumbo/química , Gênero Iris , Raízes de Plantas/crescimento & desenvolvimento , Solo , Poluentes do Solo
2.
Bull Environ Contam Toxicol ; 103(6): 854-859, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31595321

RESUMO

A hydroponic experiment was carried out to study the accumulation characteristics of copper (Cu) and lead (Pb) combined pollution in three ornamental plants. The results showed that these tested ornamental plants had higher tolerance to Cu-Pb combined pollution and could effectively accumulate the heavy metals. The Cu and Pb concentrations were higher in the roots of the ornamental plants than that in the shoots. For Panax notoginseng (P. notoginseng), Chlorophytum comosum (C. comosum) and Calendula officinalis (C. officinalis), the average Cu and Pb concentration in the three ornamental plants were 1402.1 mg/kg, 829.5 mg/kg, and 1473.4 mg/kg for Cu and 2710.4 mg/kg, 4250.3 mg/kg, and 4303.6 mg/kg for Pb, respectively. The three ornamental plants accumulation and tolerance to Cu-Pb were demonstrated through the hydroponic-culture method in this study. Therefore, the three ornamental plants should have great potential to be used in remediation of soils contaminated by Cu and Pb and beautifying the environment simultaneously.


Assuntos
Cobre/análise , Chumbo/análise , Plantas/química , Poluentes do Solo/análise , Bioacumulação , Biodegradação Ambiental , Calendula/química , Hidroponia , Modelos Teóricos , Panax notoginseng/química , Raízes de Plantas/química
3.
Front Plant Sci ; 15: 1338521, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384755

RESUMO

Root plasticity is fundamental to soil nutrient acquisition and maximizing production. Different soil nitrogen (N) levels affect root development, aboveground dry matter accumulation, and N uptake. This phenotypic plasticity is well documented for single plants and specific monocultures but is much less understood in intercrops in which species compete for the available nutrients. Consequently, the study tested whether the plasticity of plant roots, biomass and N accumulation under different N levels in maize/alfalfa intercropping systems differs quantitatively. Maize and alfalfa were intercropped for two consecutive years in large soil-filled rhizoboxes and fertilized with 6 different levels of N fertilizer (0, 75, 150, 225, 270, and 300 kg ha-1). Root length, root surface area, specific root length, N uptake and yield were all increased in maize with increasing fertilizer level, whereas higher N rates were supraoptimal. Alfalfa had an optimal N rate of 75-150 kg ha-1, likely because the competition from maize became more severe at higher rates. Maize responded more strongly to the fertilizer treatment in the second year when the alfalfa biomass was much larger. N fertilization contributes more to maize than alfalfa growth via root plasticity responses. Our results suggest that farmers can maximize intercropping yield and economic return by optimizing N fertilizer management.

4.
Front Plant Sci ; 13: 1077948, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684768

RESUMO

Introduction: Surplus use of chemical nitrogen (N) fertilizers to increase agricultural Q9 production causes severe problems to the agricultural ecosystem and environment. This is contrary to N use efficiency and sustainable agricultural production. Methods: Hence, this study was designed to investigate the effect of maizesoybean intercropping on N uptake, N yield, N utilization use efficiency, and the associated nitrogen assimilatory enzymes of maize crops under different N fertilization for two consecutive years 2021-2022. Results: The findings of the study showed that intercropping at the optimal N rate (N1) (250 kg N ha-1) increased significantly maize grain yield by 30 and 34%, residue yield by 30 and 37%, and 100-grain weight by 33 and 39% in the year 2021 and 2022, respectively. As compared with mono-cropping, at this optimal N rate, the respective increase (of maize's crop N yield indices) for 2021 and 2022 were 53 and 64% for grain N yield, and 53 and 68% for residue N yield. Moreover, intercropping at N1 resulted in higher grain N content by 28 and 31%, residue N content by 18 and 22%, and total N uptake by 65 and 75% in 2021 and 2022, respectively. The values for the land equivalent ratio for nitrogen yield (LERN) were greater than 1 in intercropping, indicating better utilization of N under the intercropping over mono-cropping. Similarly, intercropping increased the N assimilatory enzymes of maize crops such as nitrate reductase (NR) activity by 19 and 25%, nitrite reductase (NiR) activity by 20 and 23%, and glutamate synthase activity (GOGAT) by 23 and 27% in 2021 and 2022, respectively. Consequently, such increases resulted in improved nitrogen use efficiency indices such as N use efficiency (NUE), partial factor nitrogen use efficiency (PFNUE), nitrogen uptake efficiency (NUpE), and nitrogen agronomic efficiency (NAE) under intercropping than mono-cropping. Conclusion: Thus, this suggests that maize-soybean intercropping under optimal N fertilization can improve the nitrogen status and nitrogen use efficiency of maize crops by regulating the nitrogen assimilatory enzymes, thereby enhancing its growth and yield. Therefore, prioritizing intercropping over an intensive mono-cropping system could be a better option for sustainable agricultural production.

5.
PLoS One ; 11(3): e0151622, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26992097

RESUMO

In this study, we examined the influence of different nitrogen (N) application rates (0, 168, 240, 270 and 312 kg N ha(-1)) on soil properties, maize (Zea mays L.) yields and microbial communities of three types of soils (clay, alluvial and sandy soils). Phospholipid fatty acid analysis was used to characterize soil microbial communities. Results indicated that N fertilization significantly decreased microbial biomass in both clay and sandy soils regardless of application rate. These decreases were more likely a result of soil pH decreases induced by N fertilization, especially in the sandy soils. This is supported by structural equation modeling and redundancy analysis results. Nitrogen fertilization also led to significant changes in soil microbial community composition. However, the change differences were gradually dismissed with increase in N application rate. We also observed that N fertilization increased maize yields to the same level regardless of application rate. This suggests that farmers could apply N fertilizers at a lower rate (i.e. 168 kg N ha(-1)), which could achieve high maize yield on one hand while maintain soil microbial functions on the other hand.


Assuntos
Fertilizantes/análise , Microbiota/efeitos dos fármacos , Nitrogênio/química , Microbiologia do Solo , Solo/química , Agricultura/métodos , Biomassa , Zea mays/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA